[1] 何鑫, 尹璐, 涂彬, 等. 我国综合能源服务的现状与发展趋势 [J]. 中国电力企业管理, 2020(31): 51-53. DOI:  10.3969/j.issn.1007-3361.2020.31.013.

HE X, YIN L, TU B, et al. Status quo and development trend of integrated energy services in China [J]. China power enterprise management, 2020(31): 51-53. DOI:  10.3969/j.issn.1007-3361.2020.31.013.
[2] 雷博涵. 国家能源局印发《2022年能源工作指导意见》 [N]. 国家电网报, 2022-03-30(001). DOI:  10.28266/n.cnki.ngjdw.2022.000873.

LEI B H. National Energy Administration issues guiding opinions on energy work in 2022 [N]. State grid news, 2022-03-30(001). DOI:  10.28266/n.cnki.ngjdw.2022.000873.
[3] 崔全胜, 白晓民, 董伟杰, 等. 用户侧综合能源系统规划运行联合优化 [J]. 中国电机工程学报, 2019, 39(17): 4967-4981. DOI:  10.13334/j.0258-8013.pcsee.181874.

CUI Q S, BAI X M, DONG W J, et al. Joint optimization of planning and operation in user-side multi-energy systems [J]. Proceedings of the CSEE, 2019, 39(17): 4967-4981. DOI:  10.13334/j.0258-8013.pcsee.181874.
[4] CHEN X Y, KANG C Q, O'MALLEY M, et al. Increasing the flexibility of combined heat and power for wind power integration in China: modeling and implications [J]. IEEE transactions on power systems, 2015, 30(4): 1848-1857. DOI:  10.1109/TPWRS.2014.2356723.
[5] WANG C S, LV C X, LI P, et al. Modeling and optimal operation of community integrated energy systems: a case study from China [J]. Applied energy, 2018, 230: 1242-1254. DOI:  10.1016/j.apenergy.2018.09.042.
[6] GE P D, HU Q R, WU Q W, et al. Increasing operational flexibility of integrated energy systems by introducing power to hydrogen [J]. IET renewable power generation, 2020, 14(3): 372-380. DOI:  10.1049/iet-rpg.2019.0663.
[7] 张晓辉, 刘小琰, 钟嘉庆. 考虑奖惩阶梯型碳交易和电-热转移负荷不确定性的综合能源系统规划 [J]. 中国电机工程学报, 2020, 40(19): 6132-6141. DOI:  10.13334/j.0258-8013.pcsee.191302.

ZHANG X H, LIU X Y, ZHONG J Q. Integrated energy system planning considering a reward and punishment ladder-type carbon trading and electric-thermal transfer load uncertainty [J]. Proceedings of the CSEE, 2020, 40(19): 6132-6141. DOI:  10.13334/j.0258-8013.pcsee.191302.
[8] ZHANG X H, ZHAO X X, ZHONG J Q, et al. Low carbon multi-objective scheduling of integrated energy system based on ladder light robust optimization [J]. International transactions on electrical energy systems, 2020, 30(9): e12498. DOI:  10.1002/2050-7038.12498.
[9] 董帅, 王成福, 梁军, 等. 计及电转气运行成本的综合能源系统多目标日前优化调度 [J]. 电力系统自动化, 2018, 42(11): 8-15. DOI:  10.7500/AEPS20170721003.

DONG S, WANG C F, LIANG J, et al. Multi-objective optimal day-ahead dispatch of integrated energy system considering power-to-gas operation cost [J]. Automation of electric power systems, 2018, 42(11): 8-15. DOI:  10.7500/AEPS20170721003.
[10] 邓逸天, 王宇辉, 黄景光, 等. 考虑需求响应的含P2G电-气综合能源系统优化调度 [J]. 智慧电力, 2020, 48(12): 8-13,32. DOI:  10.3969/j.issn.1673-7598.2020.12.003.

DENG Y T, WANG Y H, HUANG J G, et al. Optimal dispatch of integrated electricity-gas system with power to gas considering demand response [J]. Smart power, 2020, 48(12): 8-13,32. DOI:  10.3969/j.issn.1673-7598.2020.12.003.
[11] 张涛, 郭玥彤, 李逸鸿, 等. 计及电气热综合需求响应的区域综合能源系统优化调度 [J]. 电力系统保护与控制, 2021, 49(1): 52-61. DOI:  10.19783/j.cnki.pspc.200167.

ZHANG T, GUO Y T, LI Y H, et al. Optimization scheduling of regional integrated energy systems based on electric-thermal-gas integrated demand response [J]. Power system protection and control, 2021, 49(1): 52-61. DOI:  10.19783/j.cnki.pspc.200167.
[12] 卢涛. 计及碳排放与可再生能源配额制的综合能源系统优化 [D]. 昆明: 昆明理工大学, 2021. DOI:  10.27200/d.cnki.gkmlu.2021.000990.

LU T. Integrated energy system optimisation taking into account carbon emission and renewable energy quota system [D]. Kunming: Kunming University of Science and Technology, 2021. DOI:  10.27200/d.cnki.gkmlu.2021.000990.
[13] 李淑珍. 基于博弈论的区域综合能源系统运营策略研究 [D]. 济南: 山东大学, 2021. DOI:  10.27272/d.cnki.gshdu.2021.005253.

LI S Z. Research on operation strategy of regional integrated energy system based on game theory [D]. Jinan: Shandong University, 2021. DOI:  10.27272/d.cnki.gshdu.2021.005253.
[14] 崔帅, 唐晓宁, 张彬, 等. 合成气甲烷化过程热力学分析 [J]. 计算机与应用化学, 2015(4): 419-425. DOI: 10.11719/com.app. chem20150407.

CUI S, TANG X N, ZHANG B, et al. Thermodynamic analysis for the synthesis process of methane [J]. Computers and applied chemistry, 2015(4): 419-425. DOI: 10.11719/com.app. chem20150407.
[15] 蒙浩, 吕泽伟, 韩敏芳. 日本家用燃料电池热电联供系统商业化应用分析 [J]. 中外能源, 2018, 23(10): 1-8.

MENG H, LÜ Z W, HAN M F. Commercial application of household fuel cell CHP system in Japan [J]. Sino-global energy, 2018, 23(10): 1-8.
[16] 陈云, 刘东, 高飞, 等. 考虑电转气环节氢能精细化利用的区域综合能源系统日前优化调度 [J]. 供用电, 2021, 38(11): 59-67. DOI:  10.19421/j.cnki.1006-6357.2021.11.010.

CHEN Y, LIU D, GAO F, et al. Day-ahead optimal dispatching of regional integrated energy system considering refined utilization of hydrogen in power to gas process [J]. Distribution & utilization, 2021, 38(11): 59-67. DOI:  10.19421/j.cnki.1006-6357.2021.11.010.
[17] 张又中, 张兴平, 檀勤良. 考虑碳捕集和电转气技术耦合的多能互补系统协同规划 [J]. 可再生能源, 2021, 39(8): 1107-1116. DOI:  10.3969/j.issn.1671-5292.2021.08.018.

ZHANG Y Z, ZHANG X P, TAN Q L. Collaborative planning method for multi-energy system considering the coupling of power-to-gas and carbon capture technology [J]. Renewable energy resources, 2021, 39(8): 1107-1116. DOI:  10.3969/j.issn.1671-5292.2021.08.018.
[18] 石梦舒, 宋志成, 黄元生. 考虑绿氢制取和碳捕捉的电转气综合效益评价 [J]. 南方能源建设, 2023, 10(3): 74-88. DOI:  10.16516/j.gedi.issn2095-8676.2023.03.008.

SHI M S, SONG Z C, HUANG Y S. Comprehensive benefit evaluation of power to gas conversion considering green hydrogen production and carbon capture [J]. Southern energy construction, 2023, 10(3): 74-88. DOI:  10.16516/j.gedi.issn2095-8676.2023.03.008.
[19] 廖远旭, 董英瑞, 孙翔, 等. 可再生能源制氢综合能源管理平台研究 [J]. 南方能源建设, 2022, 9(4): 47-52. DOI:  10.16516/j.gedi.issn2095-8676.2022.04.006.

LIAO Y X, DONG Y R, SUN X, et al. Research on comprehensive energy management platform for hydrogen production from renewable energy [J]. Southern energy construction, 2022, 9(4): 47-52. DOI:  10.16516/j.gedi.issn2095-8676.2022.04.006.
[20] SUN W, HARRISON G P, DODDS P E. A multi-model method to assess the value of power-to-gas using excess renewable [J]. International journal of hydrogen energy, 2022, 47(15): 9103-9114. DOI: 10.1016/j. ijhydene.2021.12.248.
[21] 李汪繁, 吴何来. 双碳目标下我国碳市场发展分析及建议 [J]. 南方能源建设, 2022, 9(4): 118-126. DOI:  10.16516/j.gedi.issn2095-8676.2022.04.015.

LI W F, WU H L. Analysis and suggestions for the development of carbon emissions trading markets in China under carbon peak and neutrality goals [J]. Southern energy construction, 2022, 9(4): 118-126. DOI:  10.16516/j.gedi.issn2095-8676.2022.04.015.
[22] MA Y M, WANG H X, HONG F, et al. Modeling and optimization of combined heat and power with power-to-gas and carbon capture system in integrated energy system [J]. Energy, 2021, 236: 121392. DOI:  10.1016/j.energy.2021.121392.
[23] 刘巍, 袁韩生. 数据中心天然气分布式能源冷电联供技术方案与经济性分析 [J]. 南方能源建设, 2019, 6(2): 112-117. DOI:  10.16516/j.gedi.issn2095-8676.2019.02.020.

LIU W, YUAN H S. Technical solution and economic analysis for natural gas distributed energy unit combined cooling and power supply of data center [J]. Southern energy construction, 2019, 6(2): 112-117. DOI:  10.16516/j.gedi.issn2095-8676.2019.02.020.