[1] 袁照威, 杨易凡. 压缩空气储能技术研究现状及发展趋势 [J]. 南方能源建设, 2024, 11(2): 146-153. DOI:  10.16516/j.ceec.2024.2.14.

YUAN Z W, YANG Y F. Research status and development trend of compressed air energy storage technology [J]. Southern energy construction, 2024, 11(2): 146-153. DOI:  10.16516/j.ceec.2024.2.14.
[2] 夏晨阳, 杨子健, 周娟, 等. 基于新型电力系统的储能技术研究 [J]. 内蒙古电力技术, 2022, 40(4): 3-12. DOI:  10.19929/j.cnki.nmgdljs.2022.0058.

XIA C Y, YANG Z J, ZHOU J, et al. Research of energy storage technology based on new power system [J]. Inner Mongolia electric power, 2022, 40(4): 3-12. DOI:  10.19929/j.cnki.nmgdljs.2022.0058.
[3] 万明忠, 杨易凡, 袁照威, 等. 大容量压缩空气储能关键技术 [J]. 南方能源建设, 2023, 10(6): 26-33. DOI:  10.16516/j.gedi.issn2095-8676.2023.06.003.

WAN M Z, YANG Y F, YUAN Z W, et al. Key technologies of large-scale compressed air energy storage [J]. Southern energy construction, 2023, 10(6): 26-33. DOI:  10.16516/j.gedi.issn2095-8676.2023.06.003.
[4] 中关村储能产业技术联盟. 储能产业研究白皮书 [EB/OL]. (2022-04-26) [2023-11-13]. http://www.esresearch.com.cn/.

CNESA. Energy storage industry research white paper [EB/OL]. (2022-04-26) [2023-11-13]. http://www.esresearch.com.cn/.
[5] 郭丁彰, 尹钊, 周学志, 等. 压缩空气储能系统储气装置研究现状与发展趋势 [J]. 储能科学与技术, 2021, 10(5): 1486-1493. DOI:  10.19799/j.cnki.2095-4239.2021.0356.

GUO D Z, YIN Z, ZHOU X Z, et al. Status and prospect of gas storage device in compressed air energy storage system [J]. Energy storage science and technology, 2021, 10(5): 1486-1493. DOI:  10.19799/j.cnki.2095-4239.2021.0356.
[6] BUDT M, WOLF D, SPAN R, et al. A review on compressed air energy storage: basic principles, past milestones and recent developments [J]. Applied energy, 2016, 170: 250-268. DOI:  10.1016/j.apenergy.2016.02.108.
[7] OLDENBURG C M, PAN L H. Porous media compressed-air energy storage (PM-CAES): theory and simulation of the coupled wellbore-reservoir system [J]. Transport in porous media, 2013, 97(2): 201-221. DOI:  10.1007/s11242-012-0118-6.
[8] 完颜祺琪, 丁国生, 赵岩, 等. 盐穴型地下储气库建库评价关键技术及其应用 [J]. 天然气工业, 2018, 38(5): 111-117. DOI:  10.3787/j.issn.1000-0976.2018.05.013.

WANYAN Q Q, DING G S, ZHAO Y, et al. Key technologies for salt-cavern underground gas storage construction and evaluation and their application [J]. Natural gas industry, 2018, 38(5): 111-117. DOI:  10.3787/j.issn.1000-0976.2018.05.013.
[9] 杨春和, 梁卫国, 魏东吼, 等. 中国盐岩能源地下储存可行性研究 [J]. 岩石力学与工程学报, 2005, 24(24): 4409-4417. DOI:  10.3321/j.issn:1000-6915.2005.24.002.

YANG C H, LIANG W G, WEI D H, et al. Investigation on possibility of energy storage in salt rock in China [J]. Chinese journal of rock mechanics and engineering, 2005, 24(24): 4409-4417. DOI:  10.3321/j.issn:1000-6915.2005.24.002.
[10] 蒋中明, 黄毓成, 刘澜婷, 等. 平江浅埋地下储气实验库力学响应数值分析 [J]. 水利水电科技进展, 2019, 39(6): 37-43. DOI:  10.3880/j.issn.10067647.2019.06.006.

JIANG Z M, HUANG Y C, LIU L T, et al. Numerical analysis of mechanical response of Pingjiang shallow underground pilot cavern for compressed air storage [J]. Advances in science and technology of water resources, 2019, 39(6): 37-43. DOI:  10.3880/j.issn.10067647.2019.06.006.
[11] 赵同彬, 刘淑敏, 马洪岭, 等. 废弃煤矿压缩空气储能研究现状与发展趋势 [J]. 煤炭科学技术, 2023, 51(10): 163-176. DOI:  10.12438/cst.2023-0131.

ZHAO T B, LIU S M, MA H L, et al. Research status and development trend of compressed air energy storage in abandoned coal mines [J]. Coal science and technology, 2023, 51(10): 163-176. DOI:  10.12438/cst.2023-0131.
[12] 杨春和, 王同涛. 深地储能研究进展 [J]. 岩石力学与工程学报, 2022, 41(9): 1729-1759. DOI:  10.13722/j.cnki.jrme.2022.0829.

YANG C H, WANG T T. Advance in deep underground energy storage [J]. Chinese journal of rock mechanics and engineering, 2022, 41(9): 1729-1759. DOI:  10.13722/j.cnki.jrme.2022.0829.
[13] GLAMHEDEN R, CURTIS P. Excavation of a cavern for high-pressure storage of natural gas [J]. Tunnelling and underground space technology, 2006, 21(1): 56-67. DOI:  10.1016/j.tust.2005.06.002.
[14] YOKOYAMA H, SHINOHARA S, KATO Y. Demonstrative operation of pilot plant for compressed air energy storage power generation [J]. Japan electric power civil engineering association, JEPOC journal, 2002, 300: 151-154 (in Japanese).
[15] SHIDAHARA T, NAKAGAWA K, IKEGAWA Y, et al. Demonstration study for the compressed air energy storage technology by the hydraulic confining method at the Kamioka testing site [R]. Tokyo: Central Research Institute of Electric Power Industry, 2001.
[16] KIM H M, RUTQVIST J, RYU D W, et al. Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: a modeling study of air tightness and energy balance [J]. Applied energy, 2012, 92: 653-667. DOI:  10.1016/j.apener-gy.2011.07.013.
[17] 夏才初, 张平阳, 周舒威, 等. 大规模压气储能洞室稳定性和洞周应变分析 [J]. 岩土力学, 2014, 35(5): 1391-1398. DOI:  10.16285/j.rsm.2014.05.013.

XIA C C, ZHANG P Y, ZHOU S W, et al. Stability and tangential strain analysis of large-scale compressed air energy storage cavern [J]. Rock and soil mechanics, 2014, 35(5): 1391-1398. DOI:  10.16285/j.rsm.2014.05.013.
[18] 蒋中明, 刘澧源, 李双龙, 等. 压气储能平江试验库受力特性数值研究 [J]. 长沙理工大学学报(自然科学版), 2017, 14(4): 62-68. DOI:  10.3969/j.issn.1672-9331.2017.04.010.

JIANG Z M, LIU L Y, LI S L, et al. Numerical study on mechanical characteristics of the Pingjiang pilot cavern for compressed air energy storage [J]. Journal of Changsha University of Science & Technology (Natural Science Edition), 2017, 14(4): 62-68. DOI:  10.3969/j.issn.1672-9331.2017.04.010.
[19] LIANG J, LINDBLOM U. Analyses of gas storage capacity in unlined rock caverns [J]. Rock mechanics and rock engineering, 1994, 27(3): 115-134. DOI:  10.1007/BF01020306.
[20] PERAZZELLI P, ANAGNOSTOU G. Design issues for compressed air energy storage in sealed underground cavities [J]. Journal of rock mechanics and geotechnical engineering, 2016, 8(3): 314-328. DOI:  10.1016/j.jrmge.2015.09.006.
[21] RUTQVIST J, KIM H M, RYU D W, et al. Modeling of coupled thermodynamic and geomechanical performance of underground compressed air energy storage in lined rock caverns [J]. International journal of rock mechanics and mining sciences, 2012, 52: 71-81. DOI:  10.1016/j.ijrmms.2012.02.010.
[22] 何秋德, 陈宁, 罗萍嘉. 基于压缩空气蓄能技术的煤矿废弃巷道再利用研究 [J]. 矿业研究与开发, 2013, 33(4): 37-39, 65. DOI:  10.13827/j.cnki.kyyk.2013.04.005.

HE Q D, CHEN N, LUO P J. Research on reuse of abandoned roadway in coal mine based on the compressed air energy storage technology [J]. Mining research and development, 2013, 33(4): 37-39, 65. DOI:  10.13827/j.cnki.kyyk.2013.04.005.
[23] KIM H M, RUTQVIST J, KIM H, et al. Failure monitoring and leakage detection for underground storage of compressed air energy in lined rock caverns [J]. Rock mechanics and rock engineering, 2016, 49(2): 573-584. DOI:  10.1007/s00603-015-0761-7.
[24] KIM H M, RUTQVIST J, JEONG J H, et al. Characterizing excavation damaged zone and stability of pressurized lined rock caverns for underground compressed air energy storage [J]. Rock mechanics and rock engineering, 2013, 46(5): 1113-1124. DOI:  10.1007/s00603-012-0312-4.
[25] ZIMMELS Y, KIRZHNER F, KRASOVITSKI B. Design criteria for compressed air storage in hard rock [J]. Energy & environment, 2002, 13(6): 851-872. DOI: 10.1260/095830502 762231313.
[26] 蒋中明, 唐栋, 李鹏, 等. 压气储能地下储气库选型选址研究 [J]. 南方能源建设, 2019, 6(3): 6-16. DOI:  10.16516/j.gedi.issn2095-8676.2019.03.002.

JIANG Z M, TANG D, LI P, et al. Research on selection method for the types and sites of underground repository for compressed air storage [J]. Southern energy construction, 2019, 6(3): 6-16. DOI:  10.16516/j.gedi.issn2095-8676.2019.03.002.
[27] 张丽英, 叶廷路, 辛耀中, 等. 大规模风电接入电网的相关问题及措施 [J]. 中国电机工程学报, 2010, 30(25): 1-9. DOI:  10.13334/j.0258-8013.pcsee.2010.25.001.

ZHANG L Y, YE T L, XIN Y Z, et al. Problems and measures of power grid accommodating large scale wind power [J]. Proceedings of the CSEE, 2010, 30(25): 1-9. DOI:  10.13334/j.0258-8013.pcsee.2010.25.001.
[28] 苏凯, 伍鹤皋, 周创兵. 内水压力下水工隧洞衬砌与围岩承载特性研究 [J]. 岩土力学, 2010, 31(8): 2407-2412, 2452. DOI:  10.3969/j.issn.1000-7598.2010.08.010.

SU K, WU H G, ZHOU C B. Study of combined bearing characteristics of lining and surrounding rock for hydraulic tunnel under internal water pressure [J]. Rock and soil mechanics, 2010, 31(8): 2407-2412, 2452. DOI:  10.3969/j.issn.1000-7598.2010.08.010.
[29] 周亚峰, 苏凯, 伍鹤皋. 水工隧洞钢筋混凝土衬砌外水压力取值方法研究 [J]. 岩土力学, 2014, 35(增刊2): 198-203, 210. DOI:  10.16285/j.rsm.2014.s2.059.

ZHOU Y F, SU K, WU H G. Study of external water pressure estimation method for reinforced concrete lining of hydraulic tunnels [J]. Rock and soil mechanics, 2014, 35(Suppl.2): 198-203, 210. DOI:  10.16285/j.rsm.2014.s2.059.
[30] 侯靖, 胡敏云. 水工高压隧洞结构设计中若干问题的讨论 [J]. 水利学报, 2001, 32(7): 36-40. DOI:  10.3321/j.issn:0559-9350.2001.07.006.

HOU J, HU M Y. Discussion on some problems in design of high pressure tunnel for hydro projects [J]. Journal of hydraulic engineering, 2001, 32(7): 36-40. DOI:  10.3321/j.issn:0559-9350.2001.07.006.
[31] 蒋中明, 甘露, 张登祥, 等. 压气储能地下储气库衬砌裂缝分布特征及演化规律研究 [J]. 岩土工程学报, 2024, 46(1): 110-119. DOI:  10.11779/CJGE20221165.

JIANG Z M, GAN L, ZHANG D X, et al. Distribution characteristics and evolution laws of liner cracks in underground caverns for compressed air energy storage [J]. Chinese journal of geotechnical engineering, 2024, 46(1): 110-119. DOI:  10.11779/CJGE20221165.
[32] 夏才初, 周舒威, 周瑜, 等. 压缩空气储能的地下岩石内衬洞室关键技术 [M]. 上海: 同济大学出版社, 2021.

XIA C C, ZHOU S W, ZHOU Y, et al. Key technology of underground rock-lined cavern for compressed air energy storage [M]. Shanghai: Tongji University Press, 2021.
[33] 张秀钊, 李林耘, 杨玉琴, 等. 考虑需求响应与储能系统的联合调峰优化策略 [J]. 内蒙古电力技术, 2022, 40(4): 68-73. DOI:  10.19929/j.cnki.nmgdljs.2022.0067.

ZHANG X Z, LI L Y, YANG Y Q, et al. Joint peak shaving optimization strategy considering demand response and energy storage system [J]. Inner Mongolia electric power, 2022, 40(4): 68-73. DOI:  10.19929/j.cnki.nmgdljs.2022.0067.
[34] 周舒威, 夏才初, 张平阳, 等. 地下压气储能圆形内衬洞室内压和温度引起应力计算 [J]. 岩土工程学报, 2014, 36(11): 2025-2035. DOI:  10.11779/CJGE201411008.

ZHOU S W, XIA C C, ZHANG P Y, et al. Analytical approach for stress induced by internal pressure and temperature of underground compressed air energy storage in a circular lined rock cavern [J]. Chinese journal of geotechnical engineering, 2014, 36(11): 2025-2035. DOI:  10.11779/CJGE201411008.
[35] 王其宽, 张彬, 王汉勋, 等. 内衬式高压储气库群布局参数优化及稳定性分析 [J]. 工程地质学报, 2020, 28(5): 1123-1131. DOI:  10.13544/j.cnki.jeg.2020-305.

WANG Q K, ZHANG B, WNAG H X, et al. Optimization and stability analysis of layout parameters of lined high-pressure gas storage caverns [J]. Journal of engineering geology, 2020, 28(5): 1123-1131. DOI:  10.13544/j.cnki.jeg.2020-305.
[36] 蒋中明, 秦双专, 唐栋. 压气储能地下储气库围岩累积损伤特性数值研究 [J]. 岩土工程学报, 2020, 42(2): 230-238. DOI:  10.11779/CJGE202002003.

JIANG Z M, QIN S Z, TANG D. Numerical study on accumulative damage characteristics of underground rock caverns for compressed air energy storage [J]. Chinese journal of geotechnical engineering, 2020, 42(2): 230-238. DOI:  10.11779/CJGE202002003.
[37] 叶斌, 程子睿, 彭益成. 压气储能洞室气密性影响因素分析 [J]. 同济大学学报(自然科学版), 2016, 44(10): 1526-1532. DOI:  10.11908/j.issn.0253-374x.2016.10.008.

YE B, CHENG Z R, PENG Y C. Analysis of influence factors on air tightness of underground cavern for compressed air energy storage [J]. Journal of Tongji University (Natural Science Edition), 2016, 44(10): 1526-1532. DOI:  10.11908/j.issn.0253-374x.2016.10.008.
[38] ALLEN R D, DOHERTY T J, KANNBERG L D. Summary of selected compressed air energy storage studies [R]. Richland: Pacific Northwest National Laboratory, 1985. DOI:  10.2172/5872515.
[39] 彭威, 商浩亮, 纪文栋, 等. 压缩空气储能电站人工硐室选址关键流程 [J]. 电力勘测设计, 2023(6): 46-49. DOI:  10.13500/j.dlkcsj.issn1671-9913.2023.06.009.

PENG W, SHANG H L, JI W D, et al. The key process of artificial chamber location of compressed air energy storage power station [J]. Electric power survey & design, 2023(6): 46-49. DOI:  10.13500/j.dlkcsj.issn1671-9913.2023.06.009.
[40] 金维平, 彭益成. 硬岩地区压缩空气储能工程地下储气洞室选址方法研究 [J]. 电力与能源, 2017, 38(1): 63-67. DOI:  10.11973/dlyny201701015.

JIN W P, PENG Y C. Underground gas storage cavern location method for compressed air energy storage engineering in hard rock area [J]. Power & energy, 2017, 38(1): 63-67. DOI:  10.11973/dlyny201701015.
[41] 蒋中明, 李小刚, 万发, 等. 压气储能遂昌地下储气库结构应力变形特性数值研究 [J]. 长沙理工大学学报(自然科学版), 2021, 18(3): 79-86. DOI:  10.3969/j.issn.1672-9331.2021.03.011.

JIANG Z M, LI X G, WAN F, et al. Numerical study on stress and deformation characteristics of structure of underground gas storage for CAES in Suichang [J]. Journal of Changsha University of Science & Technology (Natural Science Edition), 2021, 18(3): 79-86. DOI:  10.3969/j.issn.1672-9331.2021.03.011.
[42] KIM H M, PARK D, RYU D W, et al. Parametric sensitivity analysis of ground uplift above pressurized underground rock caverns [J]. Engineering geology, 2012, 135-136: 60-65. DOI:  10.1016/j.enggeo.2012.03.006.
[43] 匡根林, 许萍. 锚板抗拔理论在地下储气洞室中的应用 [J]. 水利与建筑工程学报, 2018, 16(5): 67-71. DOI:  10.3969/j.issn.1672-1144.2018.05.012.

KUANG G L, XU P. Application of anchor plate uplift capacity theory in the underground gas storage cavern [J]. Journal of water resources and architectural engineering, 2018, 16(5): 67-71. DOI:  10.3969/j.issn.1672-1144.2018.05.012.
[44] 徐英俊, 夏才初, 周舒威, 等. 基于极限分析上限定理的压气储能洞室抗隆起破坏准则 [J]. 岩石力学与工程学报, 2022, 41(10): 1971-1980. DOI:  10.13722/j.cnki.jrme.2022.0018.

XU Y J, XIA C C, ZHOU S W, et al. Anti-uplift failure criterion of caverns for compressed air energy storage based on the upper bound theorem of limit analysis [J]. Chinese journal of rock mechanics and engineering, 2022, 41(10): 1971-1980. DOI:  10.13722/j.cnki.jrme.2022.0018.
[45] 夏才初, 赵海斌, 梅松华, 等. 埋深对压气储能内衬洞室稳定性影响的定量分析 [J]. 绍兴文理学院学报, 2016, 36(9): 1-7. DOI:  10.16169/j.issn.1008-293x.k.2016.09.00.

XIA C C, ZHAO H B, MEI S H, et al. Quantitative analysis of impact of cover depth on stability of a lined rock cavern for compressed air energy storage [J]. Journal of Shaoxing University, 2016, 36(9): 1-7. DOI:  10.16169/j.issn.1008-293x.k.2016.09.00.
[46] JOHANSSON J. High pressure storage of gas in lined rock caverns [D]. Sweden: Royal Institute of Technology, 2003.
[47] STILLE H, JOHANSSON J, STURK R. High pressure storage of gas in lined shallow rock caverns-results from field tests [C]//Anon. Rock Mechanics in Petroleum Engineering, Delft, Netherlands, August 29–31, 1994. Rotterdam: A. A. Balke-ma, 1994: 689-696. DOI:  10.2118/28115-MS.
[48] HORI M, GODA Y, ONISHI H. Mechanical behaviour of surrounding rock mass and new lining structure of air-tight pressure cavern [C]//Anon. 10th ISRM Congress, Sandton, South Africa, September 8–12, 2003. Johannesburg: [s. n. ], 2003: 529-532.
[49] ISHIHATA T. Underground compressed air storage facility for CAES—G/T power plant utilizing an airtight lining [J]. News journal, international society for rock mechanics, 1997, 5(1): 17-21.
[50] 周瑜, 夏才初, 周舒威, 等. 压气储能内衬洞室高分子密封层的气密与力学特性 [J]. 岩石力学与工程学报, 2018, 37(12): 2685-2696. DOI:  10.13722/j.cnki.jrme.2018.0937.

ZHOU Y, XIA C C, ZHOU S W, et al. Air tightness and mechanical characteristics of polymeric seals in lined rock caverns (LRCs) for compressed air energy storage (CAES) [J]. Chinese journal of rock mechanics and engineering, 2018, 37(12): 2685-2696. DOI:  10.13722/j.cnki.jrme.2018.0937.
[51] 夏才初, 徐英俊, 王辰霖, 等. 基于非稳态渗流过程的压气储能洞室空气渗漏率计算 [J]. 岩土力学, 2021, 42(7): 1764-1773, 1793. DOI:  10.16285/j.rsm.2020.1385.

XIA C C, XU Y J, WANG C L, et al. Calculation of air leakage rate in lined cavern for compressed air energy storage based on unsteady seepage process [J]. Rock and soil mechanics, 2021, 42(7): 1764-1773, 1793. DOI:  10.16285/j.rsm.2020.1385.