[1] 王海洋, 荣健. 碳达峰、碳中和目标下中国核能发展路径分析 [J]. 中国电力, 2021, 54(6): 86-94. DOI:  10.11930/j.issn.1004-9649.202103141.

WANG H Y, RONG J. Analysis on China's nuclear energy development path under the goal of peaking carbon emissions and achieving carbon neutrality [J]. Electric power, 2021, 54(6): 86-94. DOI:  10.11930/j.issn.1004-9649.202103141.
[2] 张玉祯, 廖佰凤, 汪静, 等. 压水堆核电站工业供汽系统技术可行性研究 [J]. 南方能源建设, 2022, 9(2): 120-124. DOI:  10.16516/j.gedi.issn2095-8676.2022.02.017.

ZHANG Y Z, LIAO B F, WANG J, et al. Feasibility research in the technology for industrial steam supply by PWR nuclear power plant [J]. Southern energy construction, 2022, 9(2): 120-124. DOI:  10.16516/j.gedi.issn2095-8676.2022.02.017.
[3] 薛颖成, 吴宗辉, 何建. 考虑微动磨损下蒸汽发生器传热管时变可靠性评估方法 [J]. 核动力工程, 2024, 45(1): 164-170. DOI:  10.13832/j.jnpe.2024.01.0164.

XUE Y C, WU Z H, HE J. Time-varying reliability evaluation method of steam generator heat transfer tubes considering fretting wear [J]. Nuclear power engineering, 2024, 45(1): 164-170. DOI:  10.13832/j.jnpe.2024.01.0164.
[4] TANAKA H, TANAKA K, SHIMIZU F, et al. Fluidelastic analysis of tube bundle vibration in cross-flow [J]. Journal of fluids and structures, 2002, 16(1): 93-112. DOI:  10.1006/jfls.2001.0411.
[5] 韩世超, 赵嘉明, 王翠芸, 等. 某核电堆型蒸汽发生器排污系统设计改进 [J]. 南方能源建设, 2016, 3(3): 45-47,53. DOI:  10.16516/j.gedi.issn2095-8676.2016.03.009.

HAN S C, ZHAO J M, WANG C Y, et al. Design improvement of steam generator blowdown system [J]. Southern energy construction, 2016, 3(3): 45-47,53. DOI:  10.16516/j.gedi.issn2095-8676.2016.03.009.
[6] SUN Y, CAI Z B, CHEN Z Q, et al. Impact fretting wear of Inconel 690 tube with different supporting structure under cycling low kinetic energy [J]. Wear, 2017, 376-377: 625-633. DOI:  10.1016/j.wear.2017.01.011.
[7] PETTIGREW M J, TAYLOR C E, FISHER N J, et al. Flow-induced vibration: recent findings and open questions [J]. Nuclear engineering and design, 1998, 185(2/3): 249-276. DOI:  10.1016/S0029-5493(98)00238-6.
[8] PETTIGREW M J, TAYLOR C E, KIM B S. The effects of bundle geometry on heat exchanger tube vibration in two-phase cross flow [J]. Journal of pressure vessel technology, 2001, 123(4): 414-420. DOI:  10.1115/1.1388236.
[9] JO J C, JHUNG M J. Flow-induced vibration and fretting-wear predictions of steam generator helical tubes [J]. Nuclear engineering and design, 2008, 238(4): 890-903. DOI:  10.1016/j.nucengdes.2006.12.001.
[10] LAM K, JIANG G D, LIU Y, et al. Simulation of cross-flow-induced vibration of cylinder arrays by surface vorticity method [J]. Journal of fluids and structures, 2006, 22(8): 1113-1131. DOI:  10.1016/j.jfluidstructs.2006.03.004.
[11] DE PEDRO B, PARRONDO J, MESKELL C, et al. CFD modelling of the cross-flow through normal triangular tube arrays with one tube undergoing forced vibrations or fluidelastic instability [J]. Journal of fluids and structures, 2016, 64: 67-86. DOI:  10.1016/j.jfluidstructs.2016.04.006.
[12] 邱桂辉, 任红兵, 周鹏, 等. 核电厂蒸汽发生器传热管接近管运行特性研究 [J]. 核科学与工程, 2023, 43(6): 1294-1299.

QIU G H, REN H B, ZHOU P, et al. Operation characteristics analysis of heat transfer tubes with tube proximity phenomenon in steam generator of nuclear power plant [J]. Nuclear science and engineering, 2023, 43(6): 1294-1299.
[13] CHU I C, CHUNG H J, LEE S. Flow-induced vibration of nuclear steam generator U-tubes in two-phase flow [J]. Nuclear engineering and design, 2011, 241(5): 1508-1515. DOI:  10.1016/j.nucengdes.2011.01.034.
[14] SURESH KUMAR V A, NOUSHAD I B, RAJAN K K. Steam generator test facility—A test bed for steam generators of Indian sodium cooled fast breeder reactors [J]. Nuclear engineering and design, 2012, 248: 169-177. DOI:  10.1016/j.nucengdes.2012.03.021.
[15] SAWADOGO T, MUREITHI N. Fluidelastic instability study in a rotated triangular tube array subject to two-phase cross-flow. part I: fluid force measurements and time delay extraction [J]. Journal of fluids and structures, 2014, 49: 1-15. DOI:  10.1016/j.jfluidstructs.2014.02.004.
[16] SAWADOGO T, MUREITHI N. Fluidelastic instability study on a rotated triangular tube array subject to two-phase cross-flow. Part II: Experimental tests and comparison with theoretical results [J]. Journal of fluids and structures, 2014, 49: 16-28. DOI:  10.1016/j.jfluidstructs.2014.04.013.
[17] 蒋天泽, 李朋洲, 马建中, 等. 两相流作用下管束流致振动的3个关键力学问题 [J]. 核动力工程, 2016, 37(增刊2): 14-19. DOI:  10.13832/j.jnpe.2016.S2.0014.

JIANG T Z, LI P Z, MA J Z, et al. Three key mechanical problems of flow induced vibration of tube bundles in two-phase flow [J]. Nuclear power engineering, 2016, 37(Suppl. 2): 14-19. DOI:  10.13832/j.jnpe.2016.S2.0014.
[18] 齐欢欢, 姜乃斌, 冯志鹏, 等. 华龙一号蒸汽发生器流致振动关键技术研究及应用 [J]. 核动力工程, 2019, 40(增刊1): 37-40. DOI:  10.13832/j.jnpe.2019.S1.0037.

QI H H, JIANG N B, FENG Z P, et al. Key technology research and application of flow-induced vibration in HPR1000 steam generator [J]. Nuclear power engineering, 2019, 40(Suppl. 1): 37-40. DOI:  10.13832/j.jnpe.2019.S1.0037.
[19] 谭添才, 高李霞, 李朋洲, 等. ZH-65型蒸汽发生器传热管束流致振动试验研究 [J]. 核动力工程, 2019, 40(增刊1): 63-66. DOI:  10.13832/j.jnpe.2019.S1.0063.

TAN T C, GAO L X, LI P Z, et al. Experimental study on flow-induced vibration of heat transfer tube bundles of ZH-65 steam generator [J]. Nuclear power engineering, 2019, 40(Suppl. 1): 63-66. DOI:  10.13832/j.jnpe.2019.S1.0063.
[20] 唐力晨, 谢永诚, 景益, 等. 抗振条面内接触刚度对蒸汽发生器传热管流致振动的影响 [J]. 原子能科学技术, 2016, 50(4): 645-652. DOI:  10.7538/yzk.2016.50.04.0645.

TANG L C, XIE Y C, JING Y, et al. Influence of in-plane contact stiffness of anti-vibration bar on flow-induced vibration of heat-transfer tube in steam generator [J]. Atomic energy science and technology, 2016, 50(4): 645-652. DOI:  10.7538/yzk.2016.50.04.0645.
[21] 刘丽艳, 王一鹏, 朱勇, 等. 蒸汽发生器U形管湍流抖振及微动磨损研究 [J]. 振动与冲击, 2021, 40(8): 35-40. DOI:  10.13465/j.cnki.jvs.2021.08.005.

LIU L Y, WANG Y P, ZHU Y, et al. A study on turbulent buffeting and fretting wear of U-tube of a steam generator [J]. Journal of vibration and shock, 2021, 40(8): 35-40. DOI:  10.13465/j.cnki.jvs.2021.08.005.
[22] 崔素文, 朱勇, 任红兵. 防振条对蒸汽发生器传热管完整性的影响分析 [J]. 核动力工程, 2016, 37(6): 109-112. DOI:  10.13832/j.jnpe.2016.06.0109.

CUI S W, ZHU Y, REN H B. Effect of anti-vibration bar on steam generator tube integrity [J]. Nuclear power engineering, 2016, 37(6): 109-112. DOI:  10.13832/j.jnpe.2016.06.0109.
[23] 隋永旭. 一种核电主设备内管路流致振动分析 [J]. 设计与计算, 2019(1): 13-16. DOI:  10.3969/j.issn.1673-3355.2019.01.004.

SUI Y X. Flow-induced vibration analysis of internal pipeline of a nuclear power main equipment [J]. CFHI technology, 2019(1): 13-16. DOI:  10.3969/j.issn.1673-3355.2019.01.004.
[24] 邱桂辉, 任红兵, 朱勇, 等. 核电厂蒸汽发生器管子支撑板方孔对流场分布的影响 [C]//中国核学会. 中国核科学技术进展报告(第八卷)中国核学会2023年学术年会论文集 第9册 核安全 核设备 反应堆热工流体力学, 西安, 2023-10-17. 北京: 科学技术文献出版社, 2023: 107-113. DOI:  10.26914/c.cnkihy.2023.103816.

QIU G H, REN H B, ZHU Y, et al. Impacts of square hole of tube support plate on flow field distribution of steam generator in nuclear power plant [C]//Chinese Nuclear Society. Progress Report on China Nuclear Science & Technology (Vol. 8), Xi'an, October 17, 2023. Beijing: Science and Technology Literature Publishing House, 2023: 107-113. DOI:  10.26914/c.cnkihy.2023.103816.
[25] 崔素文, 杨芝栋, 任红兵. 蒸汽发生器管束支撑结构对传热管完整性的影响分析 [J]. 压力容器, 2020, 37(10): 52-56. DOI:  10.3969/j.issn.1001-4837.2020.10.008.

CUI S W, YANG Z D, REN H B. Study on the influence of steam generator tube bundle supports on tube integrity [J]. Pressure vessel technology, 2020, 37(10): 52-56. DOI:  10.3969/j.issn.1001-4837.2020.10.008.
[26] 蔡逢春, 黄旋, 沈平川, 等. 蒸汽发生器传热管在泵致脉动压力载荷下的动力学响应研究 [J]. 原子能科学技术, 2018, 52(2): 269-275. DOI:  10.7538/yzk.2018.52.02.0269.

CAI F C, HUANG X, SHEN P C, et al. Study on dynamic response of steam generator heat transfer tube under pump-induced pressure pulsation [J]. Atomic energy science and technology, 2018, 52(2): 269-275. DOI:  10.7538/yzk.2018.52.02.0269.
[27] 杨林, 李晓蒙, 张可丰, 等. 一种可开展管束流致振动试验台架的设计 [C]//中国核学会. 中国核科学技术进展报告(第六卷)——中国核学会2019年学术年会论文集第3册(核能动力分卷), 包头, 2019-08-20. 北京: 中国原子能出版社, 2019: 63-68. DOI:  10.26914/c.cnkihy.2019.056496.

YANG L, LI X M, ZANG K F, et al. Test facility design of the flow induced vibration of U-tubes in the two-phase flow [C]//Chinese Nuclear Society. Progress Report on China Nuclear Science & Technology (Vol. 6), Baotou, August 20, 2019. Beijing: Chinese Nuclear Society, 2019: 63-68. DOI:  10.26914/c.cnkihy.2019.056496.
[28] American Society of Mechanical Engineers. ASME boiler and pressure vessel code section III, Division 1: appendices N1300 [S]. NewYork: American Society of Mechanical Engineers, 2007.
[29] ROGERS R J, TAYLOR C, PETTIGREW M J. Fluid effects on multi-span heat exchanger tube vibration [C]//Proceedings of ASME Pressure Vessels and Piping Conference. San Antonio: ASME, 1984: 17-26.
[30] OWEN P R. Buffeting excitation of boiler tube vibration [J]. Journal of mechanical engineering science, 1965, 7(4): 431-439. DOI:  10.1243/JMES_JOUR_1965_007_065_02.