[1] |
王林. 第28届联合国气候变化大会在迪拜开幕 [N]. 2023-12-04(01). DOI: 10.28693/n.cnki.nshca.2023.001934.
WANG L. The 28th United Nations climate change conference opens in Dubai [N]. 2023-12-04(01). DOI: 10.28693/n.cnki.nshca.2023.001934. |
[2] |
蔡绍宽. 双碳目标的挑战与电力结构调整趋势展望 [J]. 南方能源建设, 2021, 8(3): 8-17. DOI: 10.16516/j.gedi.issn2095-8676.2021.03.002.
CAI S K. Challenges and prospects for the trends of power structure adjustment under the goal of carbon peak and neutrality [J]. Southern energy construction, 2021, 8(3): 8-17. DOI: 10.16516/j.gedi.issn2095-8676.2021.03.002. |
[3] |
DJALANTE R. Key assessments from the IPCC special report on global warming of 1.5 °C and the implications for the Sendai framework for disaster risk reduction [J]. Progress in disaster science, 2019, 1: 100001. DOI: 10.1016/j.pdisas.2019.100001. |
[4] |
胡鞍钢. 中国实现2030年前碳达峰目标及主要途径 [J]. 北京工业大学学报(社会科学版), 2021, 21(3): 1-15. DOI: 10.12120/bjutskxb202103001.
HU A G. China's goal of achieving carbon peak by 2030 and its main approaches [J]. Journal of Beijing University of Technology (social sciences edition), 2021, 21(3): 1-15. DOI: 10.12120/bjutskxb202103001. |
[5] |
邢伟, 徐汝隆, 高贺同, 等. 专利视角下空气中直接捕集CO2技术发展分析 [J]. 洁净煤技术, 2023, 29(4): 86-97. DOI: 10.13226/j.issn.1006-6772.RM23041801.
XING W, XU R L, GAO H T, et al. Analysis of the development of direct capture of carbon dioxide in the air from patent perspective [J]. Clean coal technology, 2023, 29(4): 86-97. DOI: 10.13226/j.issn.1006-6772.RM23041801. |
[6] |
STEVENSON R. Negative emissions technologies and reliable sequestration: a research agenda [J]. Integrated environmental assessment and management, 2021, 17(2): 488-489. |
[7] |
TIAN Y X, WANG R H, DENG S M, et al. Coupling direct atmospheric CO2 capture with photocatalytic CO2 reduction for highly efficient C2H6 production [J]. Nano letters, 2023, 23(23): 10914-10921. DOI: 10.1021/acs.nanolett.3c03167. |
[8] |
ZHU X C, XIE W W, WU J Y, et al. Recent advances in direct air capture by adsorption [J]. Chemical society reviews, 2022, 51(15): 6574-6651. DOI: 10.1039/D1CS00970B. |
[9] |
曹成, 侯正猛, 熊鹰, 等. 云南省碳中和技术路线与行动方案 [J]. 工程科学与技术, 2022, 54(1): 37-46. DOI: 10.15961/j.jsuese.202100919.
CAO C, HOU Z M, XIONG Y, et al. Technical routes and action plan for carbon neutral for Yunnan Province [J]. Advanced engineering sciences, 2022, 54(1): 37-46. DOI: 10.15961/j.jsuese.202100919. |
[10] |
侯正猛, 熊鹰, 刘建华, 等. 河南省碳达峰与碳中和战略、技术路线和行动方案 [J]. 工程科学与技术, 2022, 54(1): 23-36. DOI: 10.15961/j.jsuese.202100627.
HOU Z M, XIONG Y, LIU J H, et al. Strategy, technical route and action plan towards carbon peak and carbon neutrality in Henan Province [J]. Advanced engineering sciences, 2022, 54(1): 23-36. DOI: 10.15961/j.jsuese.202100627. |
[11] |
陈彬, 谢和平, 刘涛, 等. 碳中和背景下先进制氢原理与技术研究进展 [J]. 工程科学与技术, 2022, 54(1): 106-116. DOI: 10.15961/j.jsuese.202100686.
CHEN B, XIE H P, LIU T, et al. Principles and progress of advanced hydrogen production technologies in the context of carbon neutrality [J]. Advanced engineering sciences, 2022, 54(1): 106-116. DOI: 10.15961/j.jsuese.202100686. |
[12] |
LACKNER K S. Capture of carbon dioxide from ambient air [J]. The European physical journal special topics, 2009, 176(1): 93-106. DOI: 10.1140/epjst/e2009-01150-3. |
[13] |
SUTHERLAND B R. Pricing CO2 direct air capture [J]. Joule, 2019, 3(7): 1571-1573. DOI: 10.1016/j.joule.2019.06.025. |
[14] |
BRETHOME F M, WILLIAMS N J, SEIPP C A, et al. Direct air capture of CO2 via aqueous-phase absorption and crystalline-phase release using concentrated solar power [J]. Nature energy, 2018, 3(7): 553-559. DOI: 10.1038/s41560-018-0150-z. |
[15] |
LACKNER K S, BRENNAN S, MATTER J M, et al. The urgency of the development of CO2 capture from ambient air [J]. Proceedings of the national academy of sciences of the United States of America, 2012, 109(33): 13156-13162. DOI: 10.1073/pnas.1108765109. |
[16] |
王涛, 董昊, 侯成龙, 等. 直接空气捕碳CO2吸附剂综述 [J]. 浙江大学学报(工学版), 2022, 56(3): 462-475. DOI: 10.3785/j.issn.1008-973X.2022.03.005.
WANG T, DONG H, HOU C L, et al. Review of CO2 direct air capture adsorbents [J]. Journal of Zhejiang University (engineering science), 2022, 56(3): 462-475. DOI: 10.3785/j.issn.1008-973X.2022.03.005. |
[17] |
廖昌建, 张可伟, 王晶, 等. 直接空气捕碳二氧化碳技术研究进展 [J]. 化工进展, 2024, 43(4): 2031-2048. DOI: 10.16085/j.issn.1000-6613.2023-0606.
LIAO C J, ZHANG K W, WANG J, et al. Progress on direct air capture of carbon dioxide [J]. Chemical industry and engineering progress, 2024, 43(4): 2031-2048. DOI: 10.16085/j.issn.1000-6613.2023-0606. |
[18] |
ZEMAN F. Energy and material balance of CO2 capture from ambient air [J]. Environmental science & technology, 2007, 41(21): 7558-7563. DOI: 10.1021/es070874m. |
[19] |
KEITH D W, HA-DUONG M, STOLAROFF J K. Climate strategy with CO2 capture from the air [J]. Climatic change, 2006, 74(1/3): 17-45. DOI: 10.1007/s10584-005-9026-x. |
[20] |
MAHMOUDKHANI M, HEIDEL K R, FERREIRA J C, et al. Low energy packed tower and caustic recovery for direct capture of CO2 from air [C]//Proceedings of the 9th International Conference on Greenhouse Gas Control Technologies, Washington, USA, November 16-20, 2008. 2009. |
[21] |
王献红. 二氧化碳捕集和利用 [M]. 北京: 化学工业出版社, 2016.
WANG X H. CO2 capture and utilization [M]. Beijing: Chemical Industry Press, 2016. |
[22] |
HODDENBAGH J M A, WILFING K, MILLER K, et al. Borate autocausticizing: a cost effective technology [C]//Paper Presented at the 2001 Intl. Chemical Recovery Conference, Whistler, Canada, June 11, 2001. 2002. |
[23] |
STOLAROFF J K, KEITH D W, LOWRY G V. Carbon dioxide capture from atmospheric air using sodium hydroxide spray [J]. Environmental science & technology, 2008, 42(8): 2728-2735. DOI: 10.1021/es702607w. |
[24] |
SEIPP C A, WILLIAMS N J, KIDDER M K, et al. CO2 capture from ambient air by crystallization with a guanidine sorbent [J]. Angewandte chemie international edition, 2017, 56(4): 1042-1045. DOI: 10.1002/anie.201610916. |
[25] |
CAMPER D, BARA J E, GIN D L, et al. Room-temperature ionic liquid−amine solutions: tunable solvents for efficient and reversible capture of CO2 [J]. Industrial & engineering chemistry research, 2008, 47(21): 8496-8498. DOI: 10.1021/ie801002m. |
[26] |
翁小涵, 韩涛, 冯玮, 等. 负碳排放技术研究现状及进展 [J/OL]. 洁净煤技术, 2024: 1-19 (2024-07-30) [2024-08-27]. http://kns.cnki.net/kcms/detail/11.3676.TD.20240729.1729.010.html.
WENG X H, HAN T, FENG W, et al. Current status and progress of negative carbon emission technologies [J/OL]. Clean coal technology, 2024: 1-19 (2024-07-30) [2024-08-27]. http://kns.cnki.net/kcms/detail/11.3676.TD.20240729.1729.010.html. |
[27] |
ZHAO M, XIAO J, GAO W, et al. Defect-rich Mg-Al MMOs supported TEPA with enhanced charge transfer for highly efficient and stable direct air capture [J]. Journal of energy chemistry, 2022, 68: 401-410. DOI: 10.1016/j.jechem.2021.12.031. |
[28] |
ZHANG Z Q, DING Q, CUI J Y, et al. High and selective capture of low-concentration CO2 with an anion-functionalized ultramicroporous metal-organic framework [J]. Science China materials, 2021, 64(3): 691-697. DOI: 10.1007/s40843-020-1471-0. |
[29] |
BHATT P M, BELMABKHOUT Y, CADIAU A, et al. A fine-tuned fluorinated MOF addresses the needs for trace CO2 removal and air capture using physisorption [J]. Journal of the American chemical society, 2016, 138(29): 9301-9307. DOI: 10.1021/jacs.6b05345. |
[30] |
WANG T, WANG X R, HOU C L, et al. Quaternary functionalized mesoporous adsorbents for ultra-high kinetics of CO2 capture from air [J]. Scientific reports, 2020, 10(1): 21429. DOI: 10.1038/s41598-020-77477-1. |
[31] |
UNIVERSITY Z, CHINA H Z, UNIVERSITY A S, et al. Characterization of kinetic limitations to atmospheric CO2 capture by solid sorbent [J]. Greenhouse gases: science and technology, 2015. |
[32] |
KEITH D W, HOLMES G, ANGELO D S, et al. A process for capturing CO2 from the atmosphere [J]. Joule, 2018, 2(8): 1573-1594. DOI: 10.1016/j.joule.2018.05.006. |
[33] |
克里斯托夫·格巴尔, 尼古拉斯·皮亚考斯基, 托拜厄斯·吕埃施, 等. 用于吸附气体分离过程的颗粒吸附床的低压降结构: CN105163830A [P]. 2018-01-09.
CHRISTOPH GEBAHR, NICOLAS PIAKOWSKI, TOBIAS LUEESCH, et al. Low-pressure drop structure of particle adsorbent bed for adsorption gas separation process: CN105163830A [P]. 2018-01-09. |
[34] |
彼得·艾森伯格尔. 捕集和封存二氧化碳的系统和方法: CN103079671A [P]. 2013-05-01.
EISENBERGER P. System and method for carbon dioxide capture and sequestration: CN103079671A [P]. 2013-05-01. |
[35] |
彼得·艾森伯格尔. 用于二氧化碳捕集和储存的系统和方法: CN104380021B [P]. 2016-11-30.
EISENBERGER P. System and method for carbon dioxide capture and sequestration: CN104380021B [P]. 2016-11-30. |
[36] |
彼得·艾森伯格尔, 格雷谢拉·奇奇尔尼斯基. 从大气中除去二氧化碳和全球恒温器: CN106268183A [P]. 2017-01-04.
EISENBERGER P, CHICHILNISKY G. Removing carbon dioxide from atmosphere and global thermostat: CN106268183A [P]. 2017-01-04. |
[37] |
王焕君, 郭东方, 汪世清, 等. 一种利用二氧化碳和水合成甲醇的装置及方法: CN113511955A [P]. 2021-10-19.
WANG H J, GUO D F, WANG S Q, et al. Device and method for synthesizing methanol by using carbon dioxide and water: CN113511955A [P]. 2021-10-19. |
[38] |
王焕君, 郭东方, 刘蓉, 等. 一种捕碳调峰耦合装置及方法: CN113521967A [P]. 2021-10-22.
WANG H J, GUO D F, LIU R, et al. Carbon capture peak regulation coupling device and method: CN113521967A [P]. 2021-10-22. |
[39] |
邓帅, 孙鹏, 黄耀炜. 一种双极膜电渗析空气碳捕集系统: CN114307567A [P]. 2022-04-12.
DENG S, SUN P, HUANG Y W. Bipolar membrane electrodialysis air carbon capture system: CN114307567A [P]. 2022-04-12. |
[40] |
王涛, 刘卫山, 夏芝香, 等. 具有精准离子控制的直接空气捕碳二氧化碳节能系统和方法: CN114515494B [P]. 2022-11-25.
WANG T, LIU W S, XIA Z X, et al. Direct air capture carbon dioxide energy saving system and method with precise ion control: CN114515494B [P]. 2022-11-25. |
[41] |
冯俊婷, 李殿卿, 岳晓雪, 等. 一种CO2捕获转化耦合生物质氧化用光催化剂及其制备方法和应用: CN114471567B [P]. 2023-04-28.
FENG J T, LI D Q, YUE X X, et al. Photocatalyst for CO2 capture and conversion coupled biomass oxidation as well as preparation method and application of photocatalyst: CN114471567B [P]. 2023-04-28. |
[42] |
周爱国, 郑家乐, 杨川箬, 等. 直接空气二氧化碳捕集技术工业化进展 [J]. 化工进展, 2024, 43(6): 2928-2939. DOI: 10.16085/j.issn.1000-6613.2023-2211.
ZHOU A G, ZHENG J L, YANG C R, et al. Industrial progress in direct air CO2 capture technology [J]. Chemical industry and engineering progress, 2024, 43(6): 2928-2939. DOI: 10.16085/j.issn.1000-6613.2023-2211. |
[43] |
王焕君, 刘蓉, 郭东方, 等. 一种可再生能源驱动的二氧化碳加氢合成甲酸的系统及方法: CN113620798A [P]. 2021-11-09.
WANG H J, LIU R, GUO D F, et al. Renewable energy driven system and method for synthesizing formic acid through carbon dioxide hydrogenation: CN113620798A [P]. 2021-11-09. |
[44] |
IEA bioenergy - update 74 [J]. Biomass and bioenergy, 2024, 184: 107023. DOI: 10.1016/j.biombioe.2023.107023. |
[45] |
SOCOLOW R, DESMOND M, AINES R, et al. Direct air capture of CO2 with chemicals: a technology assessment for the APS panel on public affairs [J]. American physical society, 2011. |
[46] |
DEUTZ S, BARDOW A. Life-cycle assessment of an industrial direct air capture process based on temperature-vacuum swing adsorption [J]. Nature energy, 2021, 6(2): 203-213. DOI: 10.1038/s41560-020-00771-9. |
[47] |
KULKARNI A R, SHOLL D S. Analysis of equilibrium-based TSA processes for direct capture of CO2 from air [J]. Industrial & engineering chemistry research, 2012, 51(25): 8631-8645. DOI: 10.1021/ie300691c. |
[48] |
SINHA A, DARUNTE L A, JONES C W, et al. Systems design and economic analysis of direct air capture of CO2 through temperature vacuum swing adsorption using MIL-101(Cr)-PEI-800 and mmen-Mg2(dobpdc) MOF adsorbents (vol 56, pg 750, 2017) [J]. Industrial & engineering chemistry research, 2020, 59(1): 503-505. DOI: 10.1021/acs.iecr.9b06779. |
[49] |
AZARABADI H, LACKNER K S. A sorbent-focused techno-economic analysis of direct air capture [J]. Applied energy, 2019, 250: 959-975. |