[1] 黄明煌, 王秀丽, 刘沈全, 等. 分频输电应用于深远海风电并网的技术经济性分析 [J]. 电力系统自动化, 2019, 43(5): 167-174. DOI:  10.7500/AEPS20180725005.

HUANG M H, WANG X L, LIU S Q, et al. Technical and economic analysis on fractional frequency transmission system for integration of long-distance offshore wind farm [J]. Automation of electric power systems, 2019, 43(5): 167-174. DOI:  10.7500/AEPS20180725005.
[2] Global Wind Energy Cocil. GWEC global wind statistics 2017 [EB/OL]. (2018-12-06) [2023-03-29]. http://gwec.net/wp-content/uploads/2018/04/offshore.pdf.
[3] 夏云峰. 2017年欧洲海上风电新增并网容量3 148 MW [J]. 风能, 2018(2): 38-43. DOI:  10.3969/j.issn.1674-9219.2018.02.009.

XIA Y F. The newly connected capacity of European offshore wind power in 2017 was 3 148 MW [J]. Wind energy, 2018(2): 38-43. DOI:  10.3969/j.issn.1674-9219.2018.02.009.
[4] Wind Europe. Offshore wind in Europe key trends and statistics 2017 [EB/OL]. (2018-07-18) [2023-03-29]. https://windeurope.org/wp-content/uploads/files/about-wind/statistics/WindEurope-Annual-Offshore-Statistics-2017.pdf.
[5] 姜楠. 深海风力发电技术的发展现状与前景分析 [J]. 新能源进展, 2015, 3(1): 21-24. DOI:  10.3969/j.issn.2095-560X.2015.01.004.

JIANG N. Analysis on status and prospect of wind power generation in deep sea [J]. Advances in new and renewable enengy, 2015, 3(1): 21-24. DOI:  10.3969/j.issn.2095-560X.2015.01.004.
[6] 迟永宁, 梁伟, 张占奎, 等. 大规模海上风电输电与并网关键技术研究综述 [J]. 中国电机工程学报, 2016, 36(14): 3758-3770. DOI:  10.13334/j.0258-8013.pcsee.152756.

CHI Y N, LIANG W, ZHANG Z K, et al. An overview on key technologies regarding power transmission and grid integration of large scale offshore wind power [J]. Proceedings of the CSEE, 2016, 36(14): 3758-3770. DOI:  10.13334/j.0258-8013.pcsee.152756.
[7] 王锡凡, 卫晓辉, 宁联辉, 等. 海上风电并网与输送方案比较 [J]. 中国电机工程学报, 2014, 34(31): 5459-5466. DOI:  10.13334/j.0258-8013.pcsee.2014.31.001.

WANG X F, WEI X H, NING L H, et al. Integration techniques and transmission schemes for off-shore wind farms [J]. Proceedings of the CSEE, 2014, 34(31): 5459-5466. DOI:  10.13334/j.0258-8013.pcsee.2014.31.001.
[8] 徐政, 张哲任. 低频输电技术原理之一−M3C的数学模型与等效电路 [J]. 浙江电力, 2021, 40(10): 13-21. DOI:  10.19585/j.zjdl.202110002.

XU Z, ZHANG Z R. Principles of low frequency power transmission technology: part 1- mathematical model and equivalent circuit of M3C [J]. Zhejiang electric power, 2021, 40(10): 13-21. DOI:  10.19585/j.zjdl.202110002.
[9] 吴小丹, 朱海勇, 董云龙, 等. 面向柔性低频输电的模块化多电平矩阵变换器分频分层控制 [J]. 电力系统自动化, 2021, 45(18): 131-140. DOI:  10.7500/AEPS20201222003.

WU X D, ZHU H Y, DONG Y L, et al. Frequency-division and hierarchical control of modular multilevel matrix converter for flexible low-frequency transmission [J]. Automation of electric power systems, 2021, 45(18): 131-140. DOI:  10.7500/AEPS20201222003.
[10] 徐政, 张哲任. 低频输电技术原理之三−M3C基本控制策略与子模块电压平衡控制 [J]. 浙江电力, 2021, 40(10): 30-41. DOI:  10.19585/j.zjdl.202110004.

XU Z, ZHANG Z R. Principles of low frequency power transmission technology: part 3-basic control strategy for the M3C and sub-module voltage balance control [J]. Zhejiang electric power, 2021, 40(10): 30-41. DOI:  10.19585/j.zjdl.202110004.
[11] 宁联辉, 吴再驰, 王锡凡, 等. 基于模块化多电平矩阵式换流器的分频输电系统低频侧阻抗建模及稳定性判别 [J]. 电网技术, 2022, 46(10): 3720-3729. DOI:  10.13335/j.1000-3673.pst.2022.1264.

NING L H, WU Z C, WANG X F, et al. Low-frequency side impedance modeling and stability discrimination of fractional frequency transmission system based on modular multilevel matrix converter [J]. Power system technology, 2022, 46(10): 3720-3729. DOI:  10.13335/j.1000-3673.pst.2022.1264.
[12] 张扬, 林卫星, 邓才波, 等. 柔性直流输电系统低频振荡机理及抑制策略 [J]. 电网技术, 2021, 45(8): 3134-3144. DOI:  10.13335/j.1000-3673.pst.2020.0848.

ZHANG Y, LIN W X, DENG C B, et al. Low-frequency oscillation mechanism and suppression strategy of flexible HVDC transmission system [J]. Power system technology, 2021, 45(8): 3134-3144. DOI:  10.13335/j.1000-3673.pst.2020.0848.
[13] 何秉哲. 多端海上风电低频交流接入协调控制及谐波抑制 [D]. 重庆: 重庆大学, 2021. DOI: 10.27670/d.cnki.gcqdu.2021.002056.

HE B Z. Coordinated control and harmonic suppression for low frequency AC access of multi terminal offshore windfarms [D]. Chongqing: Chongqing University, 2021. DOI: 10.27670/d.cnki.Gcqdu.2021.002056.
[14] 王锡凡, 刘沈全, 宋卓彦, 等. 分频海上风电系统的技术经济分析 [J]. 电力系统自动化, 2015, 39(3): 43-50. DOI:  10.7500/AEPS20140121007.

WANG X F, LIU S Q, SONG Z Y, et al. Technical and economical analysis on offshore wind power system integrated via fractional frequency transmission system [J]. Automation of electric power systems, 2015, 39(3): 43-50. DOI:  10.7500/AEPS20140121007.
[15] 王秀丽, 赵勃扬, 黄明煌, 等. 大规模深远海风电送出方式比较及集成设计关键技术研究 [J]. 全球能源互联网, 2019, 2(2): 138-145. DOI:  10.19705/j.cnki.issn2096-5125.2019.02.004.

WANG X L, ZHAO B Y, HUANG M H, et al. Research of integration methods comparison and key design technologies for large scale long distance offshore wind power [J]. Journal of global energy interconnection, 2019, 2(2): 138-145. DOI:  10.19705/j.cnki.issn2096-5125.2019.02.004.
[16] 宁联辉, 王琦晨, 杨勇, 等. 海底电缆的低频特性分析及仿真研究 [J]. 浙江电力, 2021, 40(12): 94-102. DOI:  10.19585/j.zjdl.202112013.

NING L H, WANG Q C, YANG Y, et al. Analysis and simulation of low frequency characteristics of submarine cables [J]. Zhejiang electric power, 2021, 40(12): 94-102. DOI:  10.19585/j.zjdl.202112013.
[17] 张蕾, 许挺. 世界首个柔性低频输电工程正式落点浙江杭州 [J]. 新能源科技, 2021(6): 11. DOI:  10.3969/j.issn.2096-8809.2021.06.009.

ZHANG L, XU T. The world's first flexible low-frequency transmission project officially landed in Hangzhou, Zhejiang [J]. New energy science and technology, 2021(6): 11. DOI:  10.3969/j.issn.2096-8809.2021.06.009.
[18] 王锡凡, 王秀丽. 分频输电系统的可行性研究 [J]. 电力系统自动化, 1995, 19(4): 5-13. doi:  CNKI:SUN:DLXT.0.1995-04-000

WANG X F, WANG X L. Feasibility study of fractional division transmission system [J]. Automation of electric power systems, 1995, 19(4): 5-13. doi:  CNKI:SUN:DLXT.0.1995-04-000
[19] CRARY S B, EASLEY R M. Frequency changers—characteristics, applications, and economics [J]. Transactions of the American institute of electrical engineers, 1945, 64(6): 351-358. DOI:  10.1109/t-aiee.1945.5059151.
[20] QIN N, YOU S, XU Z, et al. Offshore wind farm connection with low frequency AC transmission technology [C]//2009 IEEE Power & Energy Society General Meeting, Calgary, Canada, July 26-30, 2009. New York, USA: IEEE, 2009: 1-9. DOI: 10.1109/PES.2009.5275262.
[21] 宁联辉, 王锡凡, 滕予非, 等. 风力发电经分频输电接入系统的实验 [J]. 中国电机工程学报, 2011, 31(21): 9-16. DOI:  10.13334/j.0258-8013.pcsee.2011.21.004.

NING L H, WANG X F, TENG Y F, et al. Experiment on wind power grid integration via fractional frequency transmission system [J]. Proceedings of the CSEE, 2011, 31(21): 9-16. DOI:  10.13334/j.0258-8013.pcsee.2011.21.004.
[22] BERGLUND R. Frequency dependence of transformer losses [D]. Gothenburg: Chalmers University of Technology, 2009.
[23] 赵国亮, 陈维江, 邓占锋, 等. 柔性低频交流输电关键技术及应用 [J]. 电力系统自动化, 2022, 46(15): 1-10. DOI:  10.7500/AEPS20220223007.

ZHAO G L, CHEN W J, DENG Z F, et al. Key technologies and application of flexible low-frequency AC transmission [J]. Automation of electric power systems, 2022, 46(15): 1-10. DOI:  10.7500/AEPS20220223007.
[24] 程灵, 马光, 韩钰, 等. 薄规格取向硅钢电磁特性及在中低频率电力装备中的应用 [J]. 电工钢, 2022, 4(4): 1-8.

CHENG L, MA G, HAN Y, et al. Electromagnetic characteristics of thin-gauge grain-oriented silicon steel and its application in medium and low frequency power equipments [J]. Electrical steel, 2022, 4(4): 1-8.
[25] 程灵. 高性能取向硅钢在电力装备中的应用技术研究 [D]. 北京: 钢铁研究总院, 2021. DOI: 10.27027/d.cnki.ggtey.2021.000007.

CHENG L. Research on applied technology of high-performance grain-oriented silicon steel in power equipment [D]. Beijing: Central Iron & Steel Research Institute, 2021. DOI: 10.27027/d.cnki.ggtey.2021.000007.
[26] 赵云, 郑明, 郑建伟. 海上升压站主变压器冷却方式选择 [J]. 南方能源建设, 2015, 2(3): 91-94,100. DOI:  10.16516/j.gedi.issn2095-8676.2015.03.018.

ZHAO Y, ZHENG M, ZHENG J W. Selection of main transformer cooling system in offshore substation [J]. Southern energy construction, 2015, 2(3): 91-94,100. DOI:  10.16516/j.gedi.issn2095-8676.2015.03.018.
[27] 戴鹏. 电力变压器智能冷却与经济运行综合控制研究 [D]. 济南: 山东大学, 2013.

DAI P. Integrated control of power transformers smart cooling & economic operation [D]. Ji′nan: Shandong University, 2013.
[28] 国网电力科学研究院武汉南瑞有限责任公司. VinsOil植物绝缘油 [EB/OL]. (2016-01-20) [2023-04-01]. http://kjfw.Cec.org.cn/jiandingtongbao/jiandingtongbao/2014-05-08/121420.html.

State Grid Electric Power Research Institute Wuhan Nanrui Co. , Ltd. VinsOil plant insulating oil [EB/OL]. (2016-01-20) [2023-04-01]. http://kjfw.Cec.org.cn/jiandingtongbao/jiandingtongbao/2014-05-08/121420.html.
[29] 韩金华, 韩筛根, 王思宝, 等. 一种基于高燃点植物绝缘油变压器设计方法 [J]. 变压器, 2014, 51(8): 38-42. DOI:  10.19487/j.cnki.1001-8425.2014.08.010.

HAN J H, HAN S G, WANG S B, et al. Transformer design method based on high ignition point vegetable insulation oil [J]. Transformer, 2014, 51(8): 38-42. DOI:  10.19487/j.cnki.1001-8425.2014.08.010.
[30] 上海市电力公司, 上海电力设计院有限公司. 10 kV 预装式变电站应用设计规程: DGJ08-99-2003 [S]. 上海: 上海市建设和管理委员会, 2003.

State Grid Shanghai Municipal Electric Power Company, Shanghai Electric Power Design Institute Co., Ltd. Shanghai engineering constraction code for 10 kV prefabricated substations: DGJ 08-1999-2003 [S]. Shanghai: Shanghai Municipal Commission of Construction and Administration, 2003.
[31] 李剑, 姚舒瀚, 杜斌, 等. 植物绝缘油及其应用研究关键问题分析与展望 [J]. 高电压技术, 2015, 41(2): 353-363. DOI:  10.13336/j.1003-6520.hve.2015.02.001.

LI J, YAO S H, DU B, et al. Analysis to principle problems and future prospect of research on vegetable insulating oils and their applications [J]. High voltage engineering, 2015, 41(2): 353-363. DOI:  10.13336/j.1003-6520.hve.2015.02.001.
[32] 陈江波, 王飞鹏, 蔡胜伟, 等. 变压器植物、矿物绝缘油的微生物降解机制及差异 [J]. 重庆大学学报, 2018, 41(2): 61-68. DOI:  10.11835/j.issn.1000-582X.2018.02.008.

CHEN J B, WANG F P, CAI S W, et al. Microbial degradation mechanisms and differences of plant and mineral insulating oil of transformers [J]. Journal of Chongqing University, 2018, 41(2): 61-68. DOI:  10.11835/j.issn.1000-582X.2018.02.008.