[1] HUANG Q L. Insights for global energy interconnection from China renewable energy development [J]. Global energy interconnection, 2020, 3(1): 1-11. DOI:  10.1016/j.gloei.2020.03.006.
[2] 王中, 黎丽丽, 李振华, 等. 考虑新能源渗透的电网频率概率分布研究 [J]. 电力系统保护与控制, 2021, 49(20): 65-73. DOI:  10.19783/j.cnki.pspc.201654.

WANG Z, LI L L, LI Z H, et al. The evolution characteristics of power grid frequency probability distribution [J]. Power system protection and control, 2021, 49(20): 65-73. DOI:  10.19783/j.cnki.pspc.201654.
[3] YE H R, AO B, BAI S, et al. Design of a fast frequency modulation control system based on photovoltaic power station [C]//2021 IEEE 5th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Xi'an, China, October 15-17, 2021. Xi'an: IEEE, 2021: 148-152. DOI:  10.1109/ITNEC52019.2021.9587286.
[4] 张金平, 汪宁渤, 黄蓉, 等. 高渗透率光伏参与电力系统调频研究综述 [J]. 电力系统保护与控制, 2019, 47(15): 179-186. DOI:  10.19783/j.cnki.pspc.181042.

ZHANG J P, WANG N B, HUANG R, et al. Survey on frequency regulation technology of power grid by high-penetration photovoltaic [J]. Power system protection and control, 2019, 47(15): 179-186. DOI:  10.19783/j.cnki.pspc.181042.
[5] JOHNSON J, SCHENKMAN B, ELLIS A, et al. Initial operating experience of the 1.2-MW La Ola photovoltaic system [C]//IEEE 38th Photovoltaic Specialists Conference (PVSC), Austin, TX, USA, June 3-8, 2012. Austin: IEEE, 2012: 1-6. DOI:  10.1109/PVSC-Vol2.2012.6656701.
[6] 严干贵, 张善峰, 贾祺, 等. 光伏发电主动参与电网频率调节的机理分析 [J]. 太阳能学报, 2021, 42(8): 191-199. DOI:  10.19912/j.0254-0096.tynxb.2019-0739.

YAN G G, ZHANG S F, JIA Q, et al. Mechanism analysis of PV generation actively participating in power grid frequency regulation [J]. Acta energiae solaris sinica, 2021, 42(8): 191-199. DOI:  10.19912/j.0254-0096.tynxb.2019-0739.
[7] 左冲, 贾彦, 孟克其劳, 等. 基于HOMER仿真的风光储互补发电系统容量优化配置研究 [J]. 内蒙古电力技术, 2023, 41(1): 21-25. DOI:  10.19929/j.cnki.nmgdljs.2023.0004.

ZUO C, JIA Y, MENG K Q L, et al. Research on optimized capacity allocation of wind-solar-storage complementary power generation system based on HOMER simulation [J]. Inner Mongolia electric power, 2023, 41(1): 21-25. DOI:  10.19929/j.cnki.nmgdljs.2023.0004.
[8] 吴启帆, 宋新立, 张静冉, 等. 电池储能参与电网一次调频的自适应综合控制策略研究 [J]. 电网技术, 2020, 44(10): 3829-3836. DOI:  10.13335/j.1000-3673.pst.2019.1214.

WU Q F, SONG X L, ZHANG J R, et al. Study on self-adaptation comprehensive strategy of battery energy storage in primary frequency regulation of power grid [J]. Power system technology, 2020, 44(10): 3829-3836. DOI:  10.13335/j.1000-3673.pst.2019.1214.
[9] 李欣然, 崔曦文, 黄际元, 等. 电池储能电源参与电网一次调频的自适应控制策略 [J]. 电工技术学报, 2019, 34(18): 3897-3908. DOI:  10.19595/j.cnki.1000-6753.tces.181061.

LI X R, CUI X W, HUANG J Y, et al. The self-adaption control strategy of energy storage batteries participating in the primary frequency regulation [J]. Transactions of China electrotechnical society, 2019, 34(18): 3897-3908. DOI:  10.19595/j.cnki.1000-6753.tces.181061.
[10] 张舒鹏, 董树锋, 徐成司, 等. 大规模储能参与电网调频的双层控制策略 [J]. 电力系统自动化, 2020, 44(19): 55-62. DOI:  10.7500/AEPS20200312007.

ZHANG S P, DONG S F, XU C S, et al. Bi-level control strategy for power grid frequency regulation with participation of large-scale energy storage [J]. Automation of electric power systems, 2020, 44(19): 55-62. DOI:  10.7500/AEPS20200312007.
[11] 李秀慧, 崔炎. 考虑调峰调频需求的新能源电网储能优化配置 [J]. 储能科学与技术, 2022, 11(11): 3594-3602. DOI:  10.19799/j.cnki.2095-4239.2022.0331.

LI X H, CUI Y. Optimal allocation of energy storage in renewable energy grid considering the demand of peak and frequency regulation [J]. Energy storage science and technology, 2022, 11(11): 3594-3602. DOI:  10.19799/j.cnki.2095-4239.2022.0331.
[12] MADALA S, DOCKHORN J, HYDE M, et al. Analysis of battery energy storage with distribution electric grid connected solar projects [C]//2022 IEEE Rural Electric Power Conference (REPC), Savannah, GA, USA, April 5-8, 2022. Savannah: IEEE, 2022: 43-53. DOI:  10.1109/REPEC55671.2022.00016.
[13] JAWAD A, NAIM S A, SAHA C, et al. Frequency stability enhancement of a large-scale PV integrated grid [C]//2020 11th International Conference on Electrical and Computer Engineering (ICECE), Dhaka, Bangladesh, December 17-19, 2020. Dhaka: IEEE, 2020: 290-293. DOI:  10.1109/ICECE51571.2020.9393073.
[14] 丁明, 施建雄, 韩平平, 等. 光储系统参与电网调频及调峰的综合控制策略 [J]. 中国电力, 2021, 54(1): 116-123,174. DOI:  10.11930/j.issn.1004-9649.201907198.

DING M, SHI J X, HAN P P, et al. An integrated control strategy for photovoltaic-energy storage system participating in frequency regulation and peak shaving of power grid [J]. Electric power, 2021, 54(1): 116-123,174. DOI:  10.11930/j.issn.1004-9649.201907198.
[15] 刘英培, 田仕杰, 梁海平, 等. 考虑SOC的电池储能系统一次调频策略研究 [J]. 电力系统保护与控制, 2022, 50(13): 107-118. DOI:  10.19783/j.cnki.pspc.211530.

LIU Y P, TIAN S J, LIANG H P, et al. Control strategy of a battery energy storage system considering SOC in primary frequency regulation of power grid [J]. Power system protection and control, 2022, 50(13): 107-118. DOI:  10.19783/j.cnki.pspc.211530.
[16] DATTA U, KALAM A, SHI J. Battery energy storage system control for mitigating PV penetration impact on primary frequency control and state-of-charge recovery [J]. IEEE transactions on sustainable energy, 2020, 11(2): 746-757. DOI:  10.1109/TSTE.2019.2904722.
[17] XU X C, CHEN J, CAI K L, et al. Energy storage allocation and control strategy for fast frequency regulation of regional grid with high-penetration renewable energy [C]//2021 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia), Chengdu, China, July 18-21, 2021. Chengdu: IEEE, 2021: 1365-1369. DOI:  10.1109/ICPSAsia52756.2021.9621412.
[18] WANG X Z, LIN C Q, SHEN C L, et al. Control strategy for fast frequency modulation of regional power grid with energy storage system [C]//2020 15th IEEE Conference on Industrial Electronics and Applications (ICIEA), Kristiansand, Norway, November 9-13, 2020. Kristiansand: IEEE, 2020: 1226-1230. DOI:  10.1109/ICIEA48937.2020.9248109.
[19] KAZME H Z, BASUMATARY K. Frequency control support in low inertia power grid by energy storage systems: a techno-economic analysis [C]//2022 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Jaipur, India, December 14-17, 2022. Jaipur: IEEE, 2022: 1-6. DOI:  10.1109/PEDES56012.2022.10080035.
[20] KÁDÁR P. Role of the battery storage in the operation of the power system [C]//2019 International IEEE Conference and Workshop in Óbuda on Electrical and Power Engineering (CANDO-EPE), Budapest, Hungary, November 20-21, 2019. Budapest: IEEE, 2019: 115-120. DOI:  10.1109/CANDO-EPE47959.2019.9110951.
[21] ŞAHIN M E, BLAABJERG F. A hybrid PV-battery/supercapacitor system and a basic active power control proposal in MATLAB/Simulink [J]. Electronics, 2020, 9(1): 129. DOI:  10.3390/electronics9010129.
[22] HAJIAGHASI S, SALEMNIA A, HAMZEH M. Hybrid energy storage system for microgrids applications: a review [J]. Journal of energy storage, 2019, 21: 543-570. DOI:  10.1016/j.est.2018.12.017.
[23] XU Q W, VAFAMAND N, CHEN L L, et al. Review on advanced control technologies for bidirectional DC/DC converters in DC microgrids [J]. IEEE journal of emerging and selected topics in power electronics, 2021, 9(2): 1205-1221. DOI:  10.1109/JESTPE.2020.2978064.
[24] TUMMURU N R, MANANDHAR U, UKIL A, et al. Control strategy for AC-DC microgrid with hybrid energy storage under different operating modes [J]. International journal of electrical power & energy systems, 2019, 104: 807-816. DOI:  10.1016/j.ijepes.2018.07.063.
[25] AKRAM U, KHALID M, SHAFIQ S. An innovative hybrid wind-solar and battery-supercapacitor microgrid system—development and optimization [J]. IEEE access, 2017, 5: 25897-25912. DOI:  10.1109/ACCESS.2017.2767618.
[26] BAHLOUL M, KHADEM S K. An analytical approach for techno-economic evaluation of hybrid energy storage system for grid services [J]. Journal of energy storage, 2020, 31: 101662. DOI:  10.1016/j.est.2020.101662.
[27] CHONG L W, WONG Y W, RAJKUMAR R K, et al. An adaptive learning control strategy for standalone PV system with battery-supercapacitor hybrid energy storage system [J]. Journal of power sources, 2018, 394: 35-49. DOI:  10.1016/j.jpowsour.2018.05.041.
[28] 郭强, 陈崇德, 胡阳, 等. 飞轮和锂电池储能联合光伏发电一次调频控制 [J]. 电力系统及其自动化学报, 2023, 35(11): 1-9. DOI:  10.19635/j.cnki.csu-epsa.001208.

GUO Q, CHEN C D, HU Y, et al. Flywheel and lithium battery energy storage combined with photovoltaic power generation participate in primary frequency regulation control [J]. Proceedings of the CSU-EPSA, 2023, 35(11): 1-9. DOI:  10.19635/j.cnki.csu-epsa.001208.
[29] WANG H X, YANG J Y, CHEN Z, et al. Model predictive control of PMSG-based wind turbines for frequency regulation in an isolated grid [J]. IEEE transactions on industry applications, 2018, 54(4): 3077-3089. DOI:  10.1109/TIA.2018.2817619.
[30] 张颖, 季宇, 唐云峰. 基于MPC含分布式光伏配电网有功功率-无功功率协调控制 [J]. 电力系统自动化, 2017, 41(21): 140-146. DOI:  10.7500/AEPS20161226001.

ZHANG Y, JI Y, TANG Y F. Coordinated control of active and reactive power for distribution network with distributed photovoltaic based on model predictive control [J]. Automation of electric power systems, 2017, 41(21): 140-146. DOI:  10.7500/AEPS20161226001.
[31] 董天翔, 翟保豫, 李星, 等. 风储联合系统参与频率响应的优化控制策略 [J]. 电网技术, 2022, 46(10): 3980-3989. DOI:  10.13335/j.1000-3673.pst.2021.1520.

DONG T X, ZHAI B Y, LI X, et al. Optimal control strategy for combined wind-storage system to participate in frequency response [J]. Power system technology, 2022, 46(10): 3980-3989. DOI:  10.13335/j.1000-3673.pst.2021.1520.
[32] 虞临波, 寇鹏, 冯玉涛, 等. 风储联合发电系统参与频率响应的模型预测控制策略 [J]. 电力系统自动化, 2019, 43(12): 36-43. DOI:  10.7500/AEPS20180923001.

YU L B, KOU P, FENG Y T, et al. Model predictive control strategy for combined wind-storage system to participate in frequency response [J]. Automation of electric power systems, 2019, 43(12): 36-43. DOI:  10.7500/AEPS20180923001.
[33] 赵晶晶, 张宇, 杜明, 等. 基于模型预测控制的新型电力系统光储电站调频控制策略 [J]. 电力建设, 2022, 43(11): 99-107. DOI:  10.12204/j.issn.1000-7229.2022.11.010.

ZHAO J J, ZHANG Y, DU M, et al. Frequency regulation control strategy based on model predictive control for combined PV and energy storage power station in new power system [J]. Electric power construction, 2022, 43(11): 99-107. DOI:  10.12204/j.issn.1000-7229.2022.11.010.
[34] ZHANG F, FU A H, DING L, et al. MPC based control strategy for battery energy storage station in a grid with high photovoltaic power penetration [J]. International journal of electrical power & energy systems, 2020, 115: 105448. DOI:  10.1016/j.ijepes.2019.105448.
[35] PARISIO A, RIKOS E, GLIELMO L. A model predictive control approach to microgrid operation optimization [J]. IEEE transactions on control systems technology, 2014, 22(5): 1813-1827. DOI:  10.1109/TCST.2013.2295737.
[36] HREDZAK B, AGELIDIS V G, JANG M. A model predictive control system for a hybrid battery-ultracapacitor power source [J]. IEEE transactions on power electronics, 2014, 29(3): 1469-1479. DOI:  10.1109/TPEL.2013.2262003.
[37] IKAOUASSEN H, MOUTAKI K, RADDAOUI A, et al. Modified predictive model control based MPPT for standalone PV in distribution system [C]//2018 6th International Renewable and Sustainable Energy Conference (IRSEC), Rabat, Morocco, December 5-8, 2018. Rabat: IEEE, 2018: 1-6. DOI:  10.1109/IRSEC.2018.8702988.
[38] 靳肖林, 文尚胜, 倪浩智, 等. 光伏发电系统最大功率点跟踪技术综述 [J]. 电源技术, 2019, 43(3): 532-535. DOI:  10.3969/j.issn.1002-087X.2019.03.052.

JIN X L, WEN S S, NI H Z, et al. Review of maximum power point tracking of photovoltaic system [J]. Chinese journal of power sources, 2019, 43(3): 532-535. DOI:  10.3969/j.issn.1002-087X.2019.03.052.
[39] BATIYAH S, ZOHRABI N, ABDELWAHED S, et al. An MPC-based power management of a PV/battery system in an islanded DC microgrid [C]//2018 IEEE Transportation Electrification Conference and Expo (ITEC), Long Beach, CA, USA, June 13-15, 2018. Long Beach: IEEE, 2018: 231-236. DOI:  10.1109/ITEC.2018.8450155.
[40] BATIYAH S, SHARMA R, ABDELWAHED S, et al. Predictive control of PV/battery system under load and environmental uncertainty [J]. Energies, 2022, 15(11): 4100. DOI:  10.3390/en15114100.
[41] WANG Y J, TIAN J Q, SUN Z D, et al. A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems [J]. Renewable and sustainable energy reviews, 2020, 131: 110015. DOI:  10.1016/j.rser.2020.110015.