[1] 韦媚媚, 项定先. 储能技术应用与发展趋势 [J]. 工业安全与环保, 2023, 49(增刊1): 4-12. DOI:  10.3969/j.issn.1001-425X.2023.z1.002.

WEI M M, XIANG D X. Application and development trend of energy storage [J]. Industrial safety and environmental protection, 2023, 49(Supp1.): 4-12. DOI:  10.3969/j.issn.1001-425X.2023.z1.002.
[2] 夏焱, 万继方, 李景翠, 等. 重力储能技术研究进展 [J]. 新能源进展, 2022, 10(3): 258-264. DOI:  10.3969/j.issn.2095-560X.2022.03.010.

XIA Y, WAN J F, LI J C, et al. Research progress of gravity energy storage technology [J]. Advances in new and renewable energy, 2022, 10(3): 258-264. DOI:  10.3969/j.issn.2095-560X.2022.03.010.
[3] 王粟, 肖立业, 唐文冰, 等. 新型重力储能研究综述 [J]. 储能科学与技术, 2022, 11(5): 1575-1582. DOI:  10.19799/j.cnki.2095-4239.2021.0590.

WANG S, XIAO L Y, TANG W B, et al. Review of new gravity energy storage [J]. Energy storage science and technology, 2022, 11(5): 1575-1582. DOI:  10.19799/j.cnki.2095-4239.2021.0590.
[4] 陈海生, 李泓, 徐玉杰, 等. 2023年中国储能技术研究进展 [J]. 储能科学与技术, 2024, 13(5): 1359-1397. DOI:  10.19799/j.cnki.2095-4239.2024.0441.

CHEN H S, LI H, XU Y J, et al. Research progress on energy storage technologies of China in 2023 [J]. Energy storage science and technology, 2024, 13(5): 1359-1397. DOI:  10.19799/j.cnki.2095-4239.2024.0441.
[5] 汤匀, 岳芳, 王莉晓, 等. 全球新型储能技术发展态势分析 [J]. 全球能源互联网, 2024, 7(2): 228-240. DOI:  10.19705/j.cnki.issn2096-5125.2024.02.012.

TANG Y, YUE F, WANG L X, et al. International development trend analysis of new energy storage technologies [J]. Journal of global energy interconnection, 2024, 7(2): 228-240. DOI:  10.19705/j.cnki.issn2096-5125.2024.02.012.
[6] TONG W X, LU Z G, CHEN W J, et al. Solid gravity energy storage: a review [J]. Journal of energy storage, 2022, 53: 105226. DOI:  10.1016/j.est.2022.105226.
[7] 修雅馨, 刘钦节, 付强, 等. 废弃矿井地下空间物理储能方式对比与优选 [J]. 绿色矿冶, 2024, 40(2): 6-13. DOI:  10.19610/j.cnki.cn10-1873/tf.2024.02.002.

XIU Y X, LIU Q J, FU Q, et al. Comparison and optimization of physical energy storage methods in underground space of abandoned mines [J]. Sustainable mining and metallurgy, 2024, 40(2): 6-13. DOI:  10.19610/j.cnki.cn10-1873/tf.2024.02.002.
[8] 张品, 姚丽英, 陈吉顺, 等. 废弃矿井重力储能现状分析及构想 [J]. 内蒙古煤炭经济, 2024(3): 9-11. DOI:  10.3969/j.issn.1008-0155.2024.03.004.

ZHANG P, YAO L Y, CHEN J S, et al. Analysis and conception of gravity energy storage in abandoned mines [J]. Inner Mongolia coal economy, 2024(3): 9-11. DOI:  10.3969/j.issn.1008-0155.2024.03.004.
[9] 张正秋, 武安, 张海川. 一种依托煤矿矿井的重力储能系统: 209676010U [P]. 2019-11-22.

ZHANG Z Q, WU A, ZHANG H C. Gravity energy storage system depending on coal mine: 209676010U [P]. 2019-11-22.
[10] 刘志强, 宋朝阳. 闭坑矿井竖井井筒开发再利用科学探索 [J]. 煤炭科学技术, 2019, 47(1): 18-24. DOI:  10.13199/j.cnki.cst.2019.01.003.

LIU Z Q, SONG Z Y. Scientific exploration of development and reutilization of vertical shafts in closed mines [J]. Coal science and technology, 2019, 47(1): 18-24. DOI:  10.13199/j.cnki.cst.2019.01.003.
[11] 邱清泉, 罗晓悦, 林玉鑫, 等. 垂直式重力储能系统的研究进展和关键技术 [J]. 储能科学与技术, 2024, 13(3): 934-945. DOI:  10.19799/j.cnki.2095-4239.2023.0789.

QIU Q Q, LUO X Y, LIN Y X, et al. Research progress and key technologies in vertical gravity energy storage systems [J]. Energy storage science and technology, 2024, 13(3): 934-945. DOI:  10.19799/j.cnki.2095-4239.2023.0789.
[12] BOTHA C D, KAMPER M J, WANG R J. Design optimisation and cost analysis of linear vernier electric machine-based gravity energy storage systems [J]. Journal of energy storage, 2021, 44: 103397. DOI:  10.1016/j.est.2021.103397.
[13] 闫文举, 杨宏伟, 孙芯竹, 等. 废旧矿井重力储能系统中多储能块地上地下运输及存储装置、方法: 202410308428.6 [P]. 2024-06-04.

YAN W J, YANG H W, SUN X Z, et al. Overground and underground transportation and storage device and method for multiple energy storage blocks in waste mine gravity energy storage system: 202410308428.6 [P]. 2024-06-04.
[14] 闫文举, 杨宏伟, 孙芯竹, 等. 废旧矿井用直线电机重力储能装置及其多储能块协同控制方法: 202311611162.4 [P]. 2024-03-01.

YAN W J, YANG H W, SUN X Z, et al. Linear motor gravity energy storage device for waste mine and multi-energy-storage-block cooperative control method of linear motor gravity energy storage device: 202311611162.4 [P]. 2024-03-01.
[15] MORSTYN T, CHILCOTT M, MCCULLOCH M D. Gravity energy storage with suspended weights for abandoned mine shafts [J]. Applied energy, 2019, 239: 201-206. DOI:  10.1016/j.apenergy.2019.01.226.
[16] 秦婷婷, 周学志, 郭丁彰, 等. 铁轨重力储能系统效率影响因素研究 [J]. 储能科学与技术, 2023, 12(3): 835-845. DOI:  10.19799/j.cnki.2095-4239.2022.0634.

QIN T T, ZHOU X Z, GUO D Z, et al. Study on factors influencing rail gravity energy storage system efficiency [J]. Energy storage science and technology, 2023, 12(3): 835-845. DOI:  10.19799/j.cnki.2095-4239.2022.0634.
[17] 杨彦群, 刘钦节, 周京军, 等. 一种用于废弃煤矿重力储能系统及布置方法: 116207869A [P]. 2023-06-02.

YANG Y Q, LIU Q J, ZHOU J J, et al. Gravity energy storage system for abandoned coal mine and arrangement method: 116207869A [P]. 2023-06-02.
[18] 宋立平, 董宝光, 王东军, 等. 一种基于矿井立井筒、提升、运输系统的重力储能系统: 209536772U [P]. 2019-10-25.

SONG L P, DONG B G, WANG D J, et al. Gravity energy storage system based on mine shaft erecting, lifting and transporting system: 209536772U [P]. 2019-10-25.
[19] ESTEBAN E, SALGADO O, ITURROSPE A, et al. Model-based estimation of elevator rail friction forces [C]//Proceedings of the Fourth International Conference on Condition Monitoring of Machinery in Non-Stationary Operations, Lyon, France, December 15-17, 2016. Lyon: Springer, 2016: 363-374. DOI:  10.1007/978-3-319-20463-5_27.
[20] Bottenfield G, Hatipoglu K, Panta Y. Advanced rail energy and storage: Analysis of potential implementations for the state of West Virginia [C]//2018 North American Power Symposium (NAPS), Fargo, ND, USA, 2018. IEEE, 2018: 1-4. DOI:  10.1109/NAPS.2018.8600665