[1] |
韦媚媚, 项定先. 储能技术应用与发展趋势 [J]. 工业安全与环保, 2023, 49(增刊1): 4-12. DOI: 10.3969/j.issn.1001-425X.2023.z1.002.
WEI M M, XIANG D X. Application and development trend of energy storage [J]. Industrial safety and environmental protection, 2023, 49(Supp1.): 4-12. DOI: 10.3969/j.issn.1001-425X.2023.z1.002. |
[2] |
夏焱, 万继方, 李景翠, 等. 重力储能技术研究进展 [J]. 新能源进展, 2022, 10(3): 258-264. DOI: 10.3969/j.issn.2095-560X.2022.03.010.
XIA Y, WAN J F, LI J C, et al. Research progress of gravity energy storage technology [J]. Advances in new and renewable energy, 2022, 10(3): 258-264. DOI: 10.3969/j.issn.2095-560X.2022.03.010. |
[3] |
王粟, 肖立业, 唐文冰, 等. 新型重力储能研究综述 [J]. 储能科学与技术, 2022, 11(5): 1575-1582. DOI: 10.19799/j.cnki.2095-4239.2021.0590.
WANG S, XIAO L Y, TANG W B, et al. Review of new gravity energy storage [J]. Energy storage science and technology, 2022, 11(5): 1575-1582. DOI: 10.19799/j.cnki.2095-4239.2021.0590. |
[4] |
陈海生, 李泓, 徐玉杰, 等. 2023年中国储能技术研究进展 [J]. 储能科学与技术, 2024, 13(5): 1359-1397. DOI: 10.19799/j.cnki.2095-4239.2024.0441.
CHEN H S, LI H, XU Y J, et al. Research progress on energy storage technologies of China in 2023 [J]. Energy storage science and technology, 2024, 13(5): 1359-1397. DOI: 10.19799/j.cnki.2095-4239.2024.0441. |
[5] |
汤匀, 岳芳, 王莉晓, 等. 全球新型储能技术发展态势分析 [J]. 全球能源互联网, 2024, 7(2): 228-240. DOI: 10.19705/j.cnki.issn2096-5125.2024.02.012.
TANG Y, YUE F, WANG L X, et al. International development trend analysis of new energy storage technologies [J]. Journal of global energy interconnection, 2024, 7(2): 228-240. DOI: 10.19705/j.cnki.issn2096-5125.2024.02.012. |
[6] |
TONG W X, LU Z G, CHEN W J, et al. Solid gravity energy storage: a review [J]. Journal of energy storage, 2022, 53: 105226. DOI: 10.1016/j.est.2022.105226. |
[7] |
修雅馨, 刘钦节, 付强, 等. 废弃矿井地下空间物理储能方式对比与优选 [J]. 绿色矿冶, 2024, 40(2): 6-13. DOI: 10.19610/j.cnki.cn10-1873/tf.2024.02.002.
XIU Y X, LIU Q J, FU Q, et al. Comparison and optimization of physical energy storage methods in underground space of abandoned mines [J]. Sustainable mining and metallurgy, 2024, 40(2): 6-13. DOI: 10.19610/j.cnki.cn10-1873/tf.2024.02.002. |
[8] |
张品, 姚丽英, 陈吉顺, 等. 废弃矿井重力储能现状分析及构想 [J]. 内蒙古煤炭经济, 2024(3): 9-11. DOI: 10.3969/j.issn.1008-0155.2024.03.004.
ZHANG P, YAO L Y, CHEN J S, et al. Analysis and conception of gravity energy storage in abandoned mines [J]. Inner Mongolia coal economy, 2024(3): 9-11. DOI: 10.3969/j.issn.1008-0155.2024.03.004. |
[9] |
张正秋, 武安, 张海川. 一种依托煤矿矿井的重力储能系统: 209676010U [P]. 2019-11-22.
ZHANG Z Q, WU A, ZHANG H C. Gravity energy storage system depending on coal mine: 209676010U [P]. 2019-11-22. |
[10] |
刘志强, 宋朝阳. 闭坑矿井竖井井筒开发再利用科学探索 [J]. 煤炭科学技术, 2019, 47(1): 18-24. DOI: 10.13199/j.cnki.cst.2019.01.003.
LIU Z Q, SONG Z Y. Scientific exploration of development and reutilization of vertical shafts in closed mines [J]. Coal science and technology, 2019, 47(1): 18-24. DOI: 10.13199/j.cnki.cst.2019.01.003. |
[11] |
邱清泉, 罗晓悦, 林玉鑫, 等. 垂直式重力储能系统的研究进展和关键技术 [J]. 储能科学与技术, 2024, 13(3): 934-945. DOI: 10.19799/j.cnki.2095-4239.2023.0789.
QIU Q Q, LUO X Y, LIN Y X, et al. Research progress and key technologies in vertical gravity energy storage systems [J]. Energy storage science and technology, 2024, 13(3): 934-945. DOI: 10.19799/j.cnki.2095-4239.2023.0789. |
[12] |
BOTHA C D, KAMPER M J, WANG R J. Design optimisation and cost analysis of linear vernier electric machine-based gravity energy storage systems [J]. Journal of energy storage, 2021, 44: 103397. DOI: 10.1016/j.est.2021.103397. |
[13] |
闫文举, 杨宏伟, 孙芯竹, 等. 废旧矿井重力储能系统中多储能块地上地下运输及存储装置、方法: 202410308428.6 [P]. 2024-06-04.
YAN W J, YANG H W, SUN X Z, et al. Overground and underground transportation and storage device and method for multiple energy storage blocks in waste mine gravity energy storage system: 202410308428.6 [P]. 2024-06-04. |
[14] |
闫文举, 杨宏伟, 孙芯竹, 等. 废旧矿井用直线电机重力储能装置及其多储能块协同控制方法: 202311611162.4 [P]. 2024-03-01.
YAN W J, YANG H W, SUN X Z, et al. Linear motor gravity energy storage device for waste mine and multi-energy-storage-block cooperative control method of linear motor gravity energy storage device: 202311611162.4 [P]. 2024-03-01. |
[15] |
MORSTYN T, CHILCOTT M, MCCULLOCH M D. Gravity energy storage with suspended weights for abandoned mine shafts [J]. Applied energy, 2019, 239: 201-206. DOI: 10.1016/j.apenergy.2019.01.226. |
[16] |
秦婷婷, 周学志, 郭丁彰, 等. 铁轨重力储能系统效率影响因素研究 [J]. 储能科学与技术, 2023, 12(3): 835-845. DOI: 10.19799/j.cnki.2095-4239.2022.0634.
QIN T T, ZHOU X Z, GUO D Z, et al. Study on factors influencing rail gravity energy storage system efficiency [J]. Energy storage science and technology, 2023, 12(3): 835-845. DOI: 10.19799/j.cnki.2095-4239.2022.0634. |
[17] |
杨彦群, 刘钦节, 周京军, 等. 一种用于废弃煤矿重力储能系统及布置方法: 116207869A [P]. 2023-06-02.
YANG Y Q, LIU Q J, ZHOU J J, et al. Gravity energy storage system for abandoned coal mine and arrangement method: 116207869A [P]. 2023-06-02. |
[18] |
宋立平, 董宝光, 王东军, 等. 一种基于矿井立井筒、提升、运输系统的重力储能系统: 209536772U [P]. 2019-10-25.
SONG L P, DONG B G, WANG D J, et al. Gravity energy storage system based on mine shaft erecting, lifting and transporting system: 209536772U [P]. 2019-10-25. |
[19] |
ESTEBAN E, SALGADO O, ITURROSPE A, et al. Model-based estimation of elevator rail friction forces [C]//Proceedings of the Fourth International Conference on Condition Monitoring of Machinery in Non-Stationary Operations, Lyon, France, December 15-17, 2016. Lyon: Springer, 2016: 363-374. DOI: 10.1007/978-3-319-20463-5_27. |
[20] |
Bottenfield G, Hatipoglu K, Panta Y. Advanced rail energy and storage: Analysis of potential implementations for the state of West Virginia [C]//2018 North American Power Symposium (NAPS), Fargo, ND, USA, 2018. IEEE, 2018: 1-4. DOI: 10.1109/NAPS.2018.8600665 |