[1] 付怀仁, 宋春节, 丛春华. 燃煤电厂供热改造技术浅析 [J]. 区域供热, 2019(2): 74-78. DOI:  10.16641/j.cnki.cn11-3241/tk.2019.02.015.

FU H R, SONG C J, CONG C H. Analysis of heat supply reform technology in coal-fired power plant [J]. District Heating, 2019(2): 74-78. DOI:  10.16641/j.cnki.cn11-3241/tk.2019.02.015.
[2] 郭东东. 热电联产供热系统节能分析及改进 [J]. 中国资源综合利用, 2018, 36(2): 90-92. DOI:  10.3969/j.issn.1008-9500.2018.02.033.

GUO D D. Energy saving analysis and improvement of cogeneration heating system [J]. China Resources Comprehensive Utilization, 2018, 36(2): 90-92. DOI:  10.3969/j.issn.1008-9500.2018.02.033.
[3] 吴斌, 邵志跃, 胡欣, 等. 215 MW机组工业抽汽供热改造 [J]. 热力发电, 2015, 44(5): 87-90. DOI:  10.3969/j.issn.1002-3364.2015.05.087.

WU B, SHAO Z Y, HU X, et al. Heat supply transformation for four 215 MW units using steam extraction [J]. Thermal Power Generation, 2015, 44(5): 87-90. DOI:  10.3969/j.issn.1002-3364.2015.05.087.
[4] 张军辉, 杜献伟, 张文涛. 300 MW纯凝机组供热改造经济性分析 [J]. 发电技术, 2019, 40(1): 71-73. DOI:  10.12096/j.2096-4528.pgt.18068.

ZHANG J H, DU X W, ZHANG W T. Economic analysis of heating reform of 300 MW condensing power plant [J]. Power Generation Technology, 2019, 40(1): 71-73. DOI:  10.12096/j.2096-4528.pgt.18068.
[5] 刘中祥. 大容量纯凝式机组改供热后的调峰能力计算 [J]. 江苏电机工程, 2015, 34(2): 75-77+81. DOI:  10.19464/j.cnki.cn32-1541/tm.2015.02.021.

LIU Z X. Peaking regulation capacity calculation of the cogeneration unit renovated from pure condensing unit [J]. Jiangsu Electrical Engineering, 2015, 34(2): 75-77+81. DOI:  10.19464/j.cnki.cn32-1541/tm.2015.02.021.
[6] 宣伟东. 300 MW机组高低旁路联合供热改造实践分析 [J]. 节能技术, 2020, 38(6): 561-564. DOI:  10.3969/j.issn.1002-6339.2020.06.018.

XUAN W D. Practical analysis of high and low bypass combined heating system for 300 MW units [J]. Energy Conservation Technology, 2020, 38(6): 561-564. DOI:  10.3969/j.issn.1002-6339.2020.06.018.
[7] 王斌, 李志炜, 谭锐, 等. 基于背压汽轮机供热改造技术的节能效果试验研究 [J]. 电站系统工程, 2021, 37(5): 54-56+60. DOI:  10.19666/j.rlfd.201807137.

WANG B, LI Z W, TAN R, et al. Experimental study on energy saving based on heating retrofit technology of back-pressure turbine [J]. Power System Engineering, 2021, 37(5): 54-56+60. DOI:  10.19666/j.rlfd.201807137.
[8] 戴昕, 范丽凯. 300 MW空冷机组高背压供热改造及应用 [J]. 自动化应用, 2020(11): 46-48. DOI:  10.19769/j.zdhy.2020.11.017.

DAI X, FAN L K. Transformation and application of high back pressure heating of 300 MW air cooling unit [J]. Automation Application, 2020(11): 46-48. DOI:  10.19769/j.zdhy.2020.11.017.
[9] 张钦鹏, 王学栋, 李峰. 330 MW汽轮机组切除低压缸运行的供热能力和调峰能力分析 [J]. 山东电力技术, 2020, 47(12): 72-76. DOI:  10.3969/j.issn.1007-9904.2020.12.017.

ZHANG Q P, WANG X D, LI F. Analysis of heating capacity and peak-regulating capacity of 330 MW steam turbine unit with low-pressure cylinder off operation [J]. Shandong Electric Power Technology, 2020, 47(12): 72-76. DOI:  10.3969/j.issn.1007-9904.2020.12.017.
[10] 高新勇, 孙士恩, 何晓红, 等. 基于热力学第二定律的热电厂低真空供热能耗分析 [J]. 热能动力工程, 2016, 31(6): 59-65. DOI:  10.16146/j.cnki.rndlgc.2016.06.010.

GAO X Y, SUN S E, HE X H, et al. Energy consumption analysis of low vacuum heating in thermal power plant based on the second law of thermo-dynamics [J]. Journal of Engineering for Thermal Energy and Power, 2016, 31(6): 59-65. DOI:  10.16146/j.cnki.rndlgc.2016.06.010.
[11] 王汝武, 曹猛. 提高热电厂效率的几项措施 [J]. 节能, 2007, 26(3): 41-44. DOI:  10.3969/j.issn.1004-7948.2007.03.015.

WANG R W, CAO M. The measures of improving the efficiency of power plants [J]. Energy Conservation, 2007, 26(3): 41-44. DOI:  10.3969/j.issn.1004-7948.2007.03.015.
[12] 李勇, 杨磊磊. 汽轮机变工况各级热力参数计算方法研究 [J]. 汽轮机技术, 2015, 57(5): 321-325+340. DOI:  10.3969/j.issn.1001-5884.2015.05.001.

LI Y, YANG L L. Research on calculation method of varying condition thermal parameters for steam turbine [J]. Turbine Technology, 2015, 57(5): 321-325+340. DOI:  10.3969/j.issn.1001-5884.2015.05.001.
[13] 杨志平, 杨勇平. 1 000 MW燃煤机组能耗及其分布 [J]. 华北电力大学学报(自然科学版), 2012, 39(2): 76-80. DOI:  10.3969/j.issn.1007-2691.2012.01.015.

YANG Z P, YANG Y P. Energy consumption and distribution of 1 000 MW coal-fired power generating unit [J]. Journal of North China Electric Power University (Natural Science Edition), 2012, 39(2): 76-80. DOI:  10.3969/j.issn.1007-2691.2012.01.015.
[14] 王金星, 郝剑, 刘畅, 等. 抽凝机组热电联产系统中扩大热电负荷比的灵活性研究 [J]. 热力发电, 2020, 49(12): 41-50. DOI:  10.19666/j.rlfd.202002095.

WANG J X, HAO J, LIU C, et al. Enlargement of heat-electricity ratio for flexibility operation in a large-scale extraction condensing turbine system [J]. Thermal Power Generation, 2020, 49(12): 41-50. DOI:  10.19666/j.rlfd.202002095.
[15] 王金星, 张少强, 张瀚文, 等. 燃煤电厂调峰调频储能技术的研究进展 [J]. 华电技术, 2020, 42(4): 64-71. DOI:  10.3969/j.issn.1674-1951.2020.04.010.

WANG J X, ZHANG S Q, ZHANG H W, et al. Progress on the peak load regulation, frequency regulation and energy storage technologies for coal-fired power plants [J]. Huadian Technology, 2020, 42(4): 64-71. DOI:  10.3969/j.issn.1674-1951.2020.04.010.
[16] 陈海平. 热力发电厂 [M]. 北京: 中国电力出版社, 2018.

CHEN H P. Thermal power plant [M]. Beijing: China Electric Power Press, 2018.