[1] 邹常跃, 韦嵘晖, 冯俊杰, 等. 柔性直流输电发展现状及应用前景 [J]. 南方电网技术, 2022, 16(3): 1-7. DOI:  10.13648/j.cnki.issn1674-0629.2022.03.001.

ZOU C Y, WEI R H, FENG J J, et al. Development status and application prospect of VSC-HVDC [J]. Southern power system technology, 2022, 16(3): 1-7. DOI:  10.13648/j.cnki.issn1674-0629.2022.03.001.
[2] 许树楷, 罗雨. 背靠背输电系统中柔性直流与常规直流的协调控制策略 [J]. 南方能源建设, 2016, 3(2): 9-15. DOI:  10.16516/j.gedi.issn2095-8676.2016.02.002.

XU S K, LUO Y. Study on coordination control strategy of VSC/LCC BtB HVDC [J]. Sothern energy construction, 2016, 3(2): 9-15. DOI:  10.16516/j.gedi.issn2095-8676.2016.02.002.
[3] 于昊洋, 张艳, 陈正曦, 等. 中国-韩国-日本跨国联网构建方案及经济性研究 [J]. 全球能源互联网, 2018, 1(增刊1): 203-212. DOI:  10.19705/j.cnki.issn2096-5125.2018.s1.001.

YU H Y, ZHANG Y, CHEN Z X, et al. Construction scheme and economic analysis of China-Korea-Japan interconnection project [J]. Journal of global energy interconnection, 2018, 1(Suppl. 1): 203-212. DOI:  10.19705/j.cnki.issn2096-5125.2018.s1.001.
[4] 李岩, 罗雨, 许树楷, 等. 柔性直流输电技术: 应用、进步与期望 [J]. 南方电网技术, 2015, 9(1): 7-13. DOI:  10.13648/j.cnki.issn1674-0629.2015.01.002.

LI Y, LUO Y, XU S K, et al. VSC-HVDC transmission technology: application, advancement and expectation [J]. Southern power system technology, 2015, 9(1): 7-13. DOI:  10.13648/j.cnki.issn1674-0629.2015.01.002.
[5] 陆子凯, 简翔浩, 张明瀚. 多端柔性直流配电网的可靠性和经济性评估 [J]. 南方能源建设, 2020, 7(4): 67-74. DOI:  10.16516/j.gedi.issn2095-8676.2020.04.010.

LU Z K, JIAN X H, ZHANG M H. Research of VSC HVDC application to China southern power grid [J]. Southern energy construction, 2020, 7(4): 67-74. DOI:  10.16516/j.gedi.issn2095-8676.2020.04.010.
[6] 徐政. 柔性直流输电系统 (第2版) [M]. 北京: 机械工业出版社, 2017.

XU Z. Flexible HVDC systems (2nd ed.) [M]. Beijing: China Machine Press, 2017.
[7] 黄志秋, 陈冰, 周敏. 海上风电送出工程技术与应用 [M]. 北京: 中国水利水电出版社, 2016.

HUANG Z Q, CHEN B, ZHOU M. Offshore wind power transmission engineering technology and application [M]. Beijing: China Water & Power Press, 2016.
[8] RAO H. Architecture of Nan'ao multi-terminal VSC-HVDC system and its multi-functional control [J]. CSEE journal of power and energy systems, 2015, 1(1): 9-18. DOI:  10.17775/CSEEJPES.2015.00002.
[9] 肖磊石, 盛超, 谭翔宇, 等. 不同类型直流超导限流器的技术经济分析 [J]. 低温与超导, 2020, 48(1): 38-43. DOI:  10.16711/j.1001-7100.2020.01.008.

XIAO L S, SHENG C, TAN X Y, et al. Technical and economic analysis of different types of superconducting fault current limiters [J]. Cryogenics & superconductivity, 2020, 48(1): 38-43. DOI:  10.16711/j.1001-7100.2020.01.008.
[10] 梁飞, 宋萌. 电阻型超导限流器的研究综述 [J]. 云南电力技术, 2018, 46(6): 127-133. DOI:  10.3969/j.issn.1006-7345.2018.06.036.

LIANG F, SONG M. Review of resistive superconducting fault current limiter [J]. Yunnan electric power, 2018, 46(6): 127-133. DOI:  10.3969/j.issn.1006-7345.2018.06.036.
[11] 张翠萍. 高温超导限流器的研究进展 [J]. 中国材料进展, 2017, 36(5): 335-343. DOI:  10.7502/j.issn.1674-3962.2017.05.03.

ZHANG C P. Progress and status of high temperature superconducting fault current limiter [J]. Materials China, 2017, 36(5): 335-343. DOI:  10.7502/j.issn.1674-3962.2017.05.03.
[12] BOCK J, HOBL A, SCHRAMM J, et al. Resistive superconducting fault current limiters are becoming a mature technology [J]. IEEE transactions on applied superconductivity, 2015, 25(3): 5600604. DOI:  10.1109/tasc.2014.2364916.
[13] GARCIA W R L, TIXADOR B, RAISON B, et al. Technical and economic analysis of the R-type SFCL for HVDC grids protection [J]. IEEE transactions on applied superconductivity, 2017, 27(7): 5602009. DOI:  10.1109/tasc.2017.2739642.
[14] 龚珺, 诸嘉慧, 方进, 等. 电阻型高温超导限流器暂态电阻特性分析 [J]. 电工技术学报, 2018, 33(9): 2130-2138. DOI:  10.19595/j.cnki.1000-6753.tces.170310.

GONG J, ZHU J H, FANG J, et al. Analysis of transient resistance characteristics for resistive type high temperature superconducting fault current limiter [J]. Transactions of China electrotechnical society, 2018, 33(9): 2130-2138. DOI:  10.19595/j.cnki.1000-6753.tces.170310.
[15] 诸嘉慧, 陈盼盼, 戴银明, 等. 适用于电阻型超导限流器的超导带材选取与实验研究 [J]. 低温与超导, 2019, 47(12): 52-56. DOI:  10.16711/j.1001-7100.2019.12.011.

ZHU J H, CHEN P P, DAI Y M, et al. HTS tape selection and test for resistive type superconducting fault current limiter [J]. Cryogenics & superconductivity, 2019, 47(12): 52-56. DOI:  10.16711/j.1001-7100.2019.12.011.
[16] 刘路昕, 张京业, 戴少涛, 等. 电阻型超导限流器研发现状及所面临的技术瓶颈 [J]. 低温与超导, 2016, 44(7): 1-5,9. DOI:  10.16711/j.1001-7100.2016.07.001.

LIU L X, ZHANG J Y, DAI S T, et al. Present status of research and development and technical bottlenecks of resistive superconducting fault current limiter [J]. Cryogenics & superconductivity, 2016, 44(7): 1-5,9. DOI:  10.16711/j.1001-7100.2016.07.001.
[17] DOMMERQUE R, KRÄMER S, HOBL A, et al. First commercial medium voltage superconducting fault-current limiters: production, test and installation [J]. Superconductor science and technology, 2010, 23(3): 034020. DOI:  10.1088/0953-2048/23/3/034020.
[18] SCHMIDT W, GAMBLE B, KRAEMER H P, et al. Design and test of current limiting modules using YBCO-coated conductors [J]. Superconductor science and technology, 2010, 23(1): 014024. DOI:  10.1088/0953-2048/23/1/014024.
[19] KRAEMER H P, SCHMIDT W, CAI H, et al. Superconducting fault current limiter for transmission voltage [J]. Physics procedia, 2012, 36: 921-926. DOI:  10.1016/j.phpro.2012.06.230.
[20] LEE H, LEE J, MOON S. Plenary talk-HTS superconducting wire development and applications in Korea [C]//Proceedings of 2013 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices, Beijing, China, October 25-27, 2013. Beijing, China: IEEE, 2013: 263-263.
[21] 黄炜昭. 220 kV高温超导故障限流器在深圳电网的应用研究 [D]. 广州: 华南理工大学, 2014.

HUANG W Z. Application of 220 kV high temperature superconducting fault current limiter to the Shenzhen power grid [D]. Guangzhou: South China University of Technology, 2014.