[1] |
江华. 未来光伏发电技术的发展趋势预测 [J]. 太阳能, 2022(1): 5-13. DOI: 10.19911/j.1003-0417.tyn20210727.a.
JIANG H. Forecast of development trend of PV power generation technologies in the future [J]. Solar energy, 2022(1): 5-13. DOI: 10.19911/j.1003-0417.tyn20210727.a. |
[2] |
徐纪忠, 潘国兵, 陈坚, 等. 海上风电场自耗能现状及海上风电发展趋势分析 [J]. 太阳能, 2022(9): 28-35. DOI: 10.19911/j.1003-0417.tyn20210811.01.
XU J Z, PAN G B, CHEN J, et al. Self-energy consumption status of offshore wind farms and development trend analysis of offshore wind power [J]. Solar energy, 2022(9): 28-35. DOI: 10.19911/j.1003-0417.tyn20210811.01. |
[3] |
王青, 江华, 李嘉彤, 等. 中国及全球光伏产业发展形势分析 [J]. 太阳能, 2022(11): 5-10. DOI: 10.19911/j.1003-0417.tyn20220829.b.
WANG Q, JIANG H, LI J T, et al. Analysis on the development situation of China and global PV industry [J]. Solar energy, 2022(11): 5-10. DOI: 10.19911/j.1003-0417.tyn20220829.b. |
[4] |
许传博, 刘建国. 氢储能在我国新型电力系统中的应用价值、挑战及展望 [J]. 中国工程科学, 2022, 24(3): 89-99. DOI: 10.15302/J-SSCAE-2022.03.010.
XU C B, LIU J G. Hydrogen energy storage in China’s new-type power system: application value, challenges, and prospects [J]. Strategic study of CAE, 2022, 24(3): 89-99. DOI: 10.15302/J-SSCAE-2022.03.010. |
[5] |
刘畅, 林汉辰, 史陈芳达, 等. 中国氢燃料电池汽车市场发展现状及展望 [J]. 南方能源建设, 2024, 11(2): 162-171. DOI: 10.16516/j.ceec.2024.2.16.
LIU C, LIN H C, SHI C F D, et al. Development status and outlook of hydrogen powered fuel cell vehicle market in China [J]. Southern energy construction, 2024, 11(2): 162-171. DOI: 10.16516/j.ceec.2024.2.16. |
[6] |
钟依庐, 刘为雄, 郑赟, 等. 风火储氢碳多能耦合打捆送出模式研究 [J]. 南方能源建设, 2023, 10(4): 122-130. DOI: 10.16516/j.gedi.issn2095-8676.2023.04.012.
ZHONG Y L, LIU W X, ZHENG Y, et al. Electricity transmission strategy research based on wind-coal-battery-hydrogen-CCUS multi energy coupling and bundling system [J]. Southern energy construction, 2023, 10(4): 122-130. DOI: 10.16516/j.gedi.issn2095-8676.2023.04.012. |
[7] |
张丝钰, 张宁, 卢静, 等. 绿氢示范项目模式分析与发展展望 [J]. 南方能源建设, 2023, 10(3): 89-96. DOI: 10.16516/j.gedi.issn2095-8676.2023.03.009.
ZHANG S Y, ZHANG N, LU J, et al. Analysis and development outlook on the typical modes of green hydrogen projects [J]. Southern energy construction, 2023, 10(3): 89-96. DOI: 10.16516/j.gedi.issn2095-8676.2023.03.009. |
[8] |
瞿小广, 陈波, 杨兴林, 等. 光伏-氢燃料电池集成供电系统设计 [J]. 机械制造与自动化, 2022, 51(4): 184-187. DOI: 10.19344/j.cnki.issn1671-5276.2022.04.047.
QU X G, CHEN B, YANG X L, et al. Design of integrated power supply system for photovoltaics-hydrogen fuel cells [J]. Machine building & automation, 2022, 51(4): 184-187. DOI: 10.19344/j.cnki.issn1671-5276.2022.04.047. |
[9] |
张诚, 檀志恒, 晁怀颇. “双碳”背景下数据中心氢能应用的可行性研究 [J]. 太阳能学报, 2022, 43(6): 327-334. DOI: 10.19912/j.0254-0096.tynxb.2022-0592.
ZHANG C, TAN Z H, CHAO H P. Feasibility study of hydrogen energy application on data “carbon peaking and neutralization” background [J]. Acta energiae solaris sinica, 2022, 43(6): 327-334. DOI: 10.19912/j.0254-0096.tynxb.2022-0592. |
[10] |
孙旭东, 成雪蕾, 王树萌, 等. 我国新能源风光发电制氢成本动态测算 [J]. 洁净煤技术, 2023, 29(6): 1-10. DOI: 10.13226/j.issn.1006-6772.CN22071501.
SUN X D, CHENG X L, WANG S M, et al. Dynamic cost analysis of hydrogen production from wind power and photovoltaic power [J]. Clean coal technology, 2023, 29(6): 1-10. DOI: 10.13226/j.issn.1006-6772.CN22071501. |
[11] |
李亮荣, 彭建, 付兵, 等. 碳中和愿景下绿色制氢技术发展趋势及应用前景分析 [J]. 太阳能学报, 2022, 43(6): 508-520. DOI: 10.19912/j.0254-0096.tynxb.2022-0183.
LI L R, PENG J, FU B, et al. Development trend and application prospect of green hydrogen production technologies under carbon neutrality vision [J]. Acta energiae solaris sinica, 2022, 43(6): 508-520. DOI: 10.19912/j.0254-0096.tynxb.2022-0183. |
[12] |
张新宝, 张超, 孟凡朋, 等. 固体氧化物燃料电池的研究进展 [J]. 山东陶瓷, 2021, 44(1): 9-11.
ZHANG X B, ZHANG C, MENG F P, et al. Research progress of solid oxide fuel cell [J]. Shandong ceramics, 2021, 44(1): 9-11. |
[13] |
吴雨泽, 王宇旸, 范红途. 固体氧化物燃料电池(SOFC)系统的研究现状 [J]. 能源研究与利用, 2019(1): 40-46. DOI: 10.16404/j.cnki.issn1001-5523.2019.01.014.
WU Y Z, WANG Y Y, FAN H T. Research status of solid oxide fuel cell (SOFC) systems [J]. Energy research & utilization, 2019(1): 40-46. DOI: 10.16404/j.cnki.issn1001-5523.2019.01.014. |
[14] |
闫国华, 闫红丽. 高温燃料电池-发动机混合发电/动力系统研究进展 [J]. 山东化工, 2021, 50(13): 52-53. DOI: 10.19319/j.cnki.issn.1008-021x.2021.13.022.
YAN G H, YAN H L. Advance on high-temperature fuel cell and engine combined system for power generation [J]. Shandong chemical industry, 2021, 50(13): 52-53. DOI: 10.19319/j.cnki.issn.1008-021x.2021.13.022. |
[15] |
卢立宁, 李素芬, 沈胜强, 等. 固体氧化物燃料电池与燃气轮机联合发电系统模拟研究 [J]. 热能动力工程, 2004, 19(4): 358-362, 436-437. DOI: 10.3969/j.issn.1001-2060.2004.04.007.
LU L N, LI S F, SHEN S Q, et al. Simulation study of a combined power generation system incorporating a solid-oxide fuel cell and a gas turbine [J]. Journal of engineering for thermal energy and power, 2004, 19(4): 358-362, 436-437. DOI: 10.3969/j.issn.1001-2060.2004.04.007. |
[16] |
段立强, 和彬彬, 杨勇平. SOFC/MGT顶层循环混合发电系统改进 [J]. 热能动力工程, 2010, 25(3): 344-349, 362.
DUAN L Q, HE B B, YANG Y P. Improvement of a SOFC/MGT (solid oxide fuel cell/micro gas turbine) top-level cycle hybrid power generation system [J]. Journal of engineering for thermal energy and power, 2010, 25(3): 344-349, 362. |
[17] |
陈启梅, 翁一武, 翁史烈, 等. 燃料电池-燃气轮机混合发电系统性能研究 [J]. 中国电机工程学报, 2006, 26(4): 31-35. DOI: 10.3321/j.issn:0258-8013.2006.04.007.
CHEN Q M, WENG Y W, WENG S L, et al. Performance analysis of a hybrid system based on a fuel cell and a gas turbine [J]. Proceedings of the CSEE, 2006, 26(4): 31-35. DOI: 10.3321/j.issn:0258-8013.2006.04.007. |
[18] |
岳秀艳, 韩吉田, 于泽庭, 等. 设置富氨蒸气回热器的固体氧化物燃料电池/燃气轮机/卡琳娜联合循环系统的热力性能分析 [J]. 中国电机工程学报, 2014, 34(26): 4483-4492. DOI: 10.13334/j.0258-8013.pcsee.2014.26.006.
YUE X Y, HAN J T, YU Z T, et al. Thermodynamic analysis of SOFC/GT/KCS integrated power generation system with reheater of concentrated ammonia vapor [J]. Proceedings of the CSEE, 2014, 34(26): 4483-4492. DOI: 10.13334/j.0258-8013.pcsee.2014.26.006. |
[19] |
蒙青山, 孔令健, 张涛, 等. 基于SOFC/GT和跨临界CO2联合循环系统热力性能研究 [J]. 太阳能学报, 2017, 38(10): 2778-2784. DOI: 10.19912/j.0254-0096.2017.10.023.
MENG Q S, KONG L J, ZHANG T, et al. Thermodynamic performance analysis of combined cycle system based on SOFC/GT and transcritical carbon dioxide [J]. Acta energiae solaris sinica, 2017, 38(10): 2778-2784. DOI: 10.19912/j.0254-0096.2017.10.023. |
[20] |
WANG J F, YAN Z Q, MA S L, et al. Thermodynamic analysis of an integrated power generation system driven by solid oxide fuel cell [J]. International journal of hydrogen energy, 2012, 37(3): 2535-2545. DOI: 10.1016/j.ijhydene.2011.10.079. |
[21] |
GANDIGLIO M, LANZINI A, LEONE P, et al. Thermoeconomic analysis of large solid oxide fuel cell plants: atmospheric vs. pressurized performance [J]. Energy, 2013, 55: 142-155. DOI: 10.1016/j.energy.2013.03.059. |
[22] |
杨智敏, 林比宏. 不可逆高温燃料电池的性能分析与参数优化 [J]. 电源技术, 2020, 44(10): 1443-1446, 1474. DOI: 10.3969/j.issn.1002-087X.2020.10.011.
YANG Z M, LIN B H. Performance analyses and parametric design strategies of irreversible high temperature fuel cell [J]. Chinese journal of power sources, 2020, 44(10): 1443-1446, 1474. DOI: 10.3969/j.issn.1002-087X.2020.10.011. |
[23] |
梁前超, 乔润鹏, 何俊能, 等. 固体氧化物燃料电池建模仿真与性能研究 [J]. 海军工程大学学报, 2021, 33(6): 77-81, 87. DOI: 10.7495/j.issn.1009-3486.2021.06.013.
LIANG Q C, QIAO R P, HE J N, et al. Modeling simulation and performance research of solid oxide fuel cell [J]. Journal of naval university of engineering, 2021, 33(6): 77-81, 87. DOI: 10.7495/j.issn.1009-3486.2021.06.013. |
[24] |
魏炜, 张宇, 董超, 等. H2-CO燃料气对SOFC性能影响研究 [J]. 电源技术, 2021, 45(12): 1589-1593. DOI: 10.3969/j.issn.1002-087X.2021.12.018.
WEI W, ZHANG Y, DONG C, et al. Study on performance of SOFC using H2-CO as fuel gas [J]. Chinese journal of power sources, 2021, 45(12): 1589-1593. DOI: 10.3969/j.issn.1002-087X.2021.12.018. |
[25] |
王佳宾, 徐虎, 董平, 等. 基于金属铝水反应的固体氧化物燃料电池/氦氙布雷顿循环动力系统研究 [J]. 推进技术, 2022, 43(10): 55-63. DOI: 10.13675/j.cnki.tjjs.210426.
WANG J B, XU H, DONG P, et al. Solid oxide fuel cell/helium-xenon Brayton cycle power system based on aluminum water combustion [J]. Journal of propulsion technology, 2022, 43(10): 55-63. DOI: 10.13675/j.cnki.tjjs.210426. |
[26] |
PENG W K, CHEN H, LIU J, et al. Techno-economic assessment of a conceptual waste-to-energy CHP system combining plasma gasification, SOFC, gas turbine and supercritical CO2 cycle [J]. Energy conversion and management, 2021, 245: 114622. DOI: 10.1016/j.enconman.2021.114622. |
[27] |
ALMEIDA PAZMIÑ G A, JUNG S, ROH S H. Process modeling of a hybrid-sulfur thermochemical cycle combined with solid oxide fuel cell/gas turbine system [J]. Energy conversion and management, 2022, 262: 115669. DOI: 10.1016/j.enconman.2022.115669. |
[28] |
陆玉正. 太阳能与固体氧化物电解池联合制氢关键技术的研究 [D]. 南京: 东南大学, 2017.
LU Y Z. Research on key issue on hydreogy production combing solar energy and low temperature of solid oxide electrolysis cells [D]. Nanjing: Southeast University, 2017. |
[29] |
王春晓. 低压饱和蒸汽轮机的结构设计与优化 [D]. 青岛: 青岛科技大学, 2013. DOI: 10.7666/d.J0105890.
WANG C X. Structure design and optimization of low-pressure saturated steam turbine [D]. Qingdao: Qingdao University of Science and Technology, 2013. DOI: 10.7666/d.J0105890. |
[30] |
张秦玮, 张筱松, 邓美隆. 一种新型化学链制氢与SOFC集成的能量系统 [J]. 中国电机工程学报, 2021, 41(5): 1804-1810. DOI: 10.13334/j.0258-8013.pcsee.200559.
ZHANG Q W, ZHANG X S, DENG M L. A novel system integrating chemical-looping hydrogen generation and solid oxide fuel cell [J]. Proceedings of the CSEE, 2021, 41(5): 1804-1810. DOI: 10.13334/j.0258-8013.pcsee.200559. |
[31] |
CHINDA P, BRAULT P. The hybrid solid oxide fuel cell (SOFC) and gas turbine (GT) systems steady state modeling [J]. International journal of hydrogen energy, 2012, 37(11): 9237-9248. DOI: 10.1016/j.ijhydene.2012.03.005. |