[1] |
吴亚雄, 谢敏. 基于BP神经网络灰色回归组合模型的年最大负荷预测 [J]. 南方能源建设, 2017, 4(2): 46-50, 57. DOI: 10.16516/j.gedi.issn2095-8676.2017.02.007.
WU Y X, XIE M. Annual peak load forecasting based on combination model of back propagation neural network and grey regression [J]. Southern energy construction, 2017, 4(2): 46-50, 57. DOI: 10.16516/j.gedi.issn2095-8676.2017.02.007. |
[2] |
李彬, 白雪峰, 王京菊, 等. 新型电力负荷管理系统发展的关键支撑技术研究 [J]. 内蒙古电力技术, 2023, 41(2): 1-6. DOI: 10.19929/j.cnki.nmgdljs.2023.0018.
LI B, BAI X F, WANG J J, et al. Research on key supporting technology for development of new power load management system [J]. Inner Mongolia electric power, 2023, 41(2): 1-6. DOI: 10.19929/j.cnki.nmgdljs.2023.0018. |
[3] |
孙玉芹, 王亚文, 朱威, 等. 基于考虑气温影响的门限自回归移动平均模型居民日用电负荷预测 [J]. 电力建设, 2022, 43(9): 117-124. DOI: 10.12204/j.issn.1000-7229.2022.09.012.
SUN Y Q, WANG Y W, ZHU W, et al. Residential daily power load forecasting based on threshold ARMA model considering the influence of temperature [J]. Electric power construction, 2022, 43(9): 117-124. DOI: 10.12204/j.issn.1000-7229.2022.09.012. |
[4] |
赵爽, 阮俊枭, 支刚, 等. 考虑尖峰负荷特性指标的用户用电行为分析 [J]. 内蒙古电力技术, 2022, 40(5): 39-45. DOI: 10.19929/j.cnki.nmgdljs.2022.0079.
ZHAO S, RUAN J X, ZHI G, et al. Analysis of power consumption behavior of users considering peak load characteristic indicators [J]. Inner Mongolia electric power, 2022, 40(5): 39-45. DOI: 10.19929/j.cnki.nmgdljs.2022.0079. |
[5] |
DORDONNAT V, KOOPMAN S J, OOMS M, et al. An hourly periodic state space model for modelling French national electricity load [J]. International journal of forecasting, 2008, 24(4): 566-587. DOI: 10.1016/j.ijforecast.2008.08.010. |
[6] |
PAPALEXOPOULOS A D, HESTERBERG T C. A regression-based approach to short-term system load forecasting [J]. IEEE transactions on power systems, 1990, 5(4): 1535-1547. DOI: 10.1109/59.99410. |
[7] |
VÄHÄKYLA P, HAKONEN E, LÉMAN P. Short-term forecasting of grid load using Box-Jenkins techniques [J]. International journal of electrical power & energy systems, 1980, 2(1): 29-34. DOI: 10.1016/0142-0615(80)90004-6. |
[8] |
CHEN J F, WANG W M, HUANG C M. Analysis of an adaptive time-series autoregressive moving-average (ARMA) model for short-term load forecasting [J]. Electric power systems research, 1995, 34(3): 187-196. DOI: 10.1016/0378-7796(95)00977-1. |
[9] |
MBAMALU G A N, EL-HAWARY M E. Load forecasting via suboptimal seasonal autoregressive models and iteratively reweighted least squares estimation [J]. IEEE transactions on power systems, 1993, 8(1): 343-348. DOI: 10.1109/59.221222. |
[10] |
TARSITANO A, AMERISE I L. Short-term load forecasting using a two-stage sarimax model [J]. Energy, 2017, 133: 108-114. DOI: 10.1016/j.energy.2017.05.126. |
[11] |
HUANG S R. Short-term load forecasting using threshold autoregressive models [J]. IEE proceedings-generation, transmission and distribution, 1997, 144(5): 477-481. DOI: 10.1049/ip-gtd:19971144. |
[12] |
ROMAN-PORTABALES A, LOPEZ-NORES M, PAZOS-ARIAS J J. Systematic review of electricity demand forecast using ANN-based machine learning algorithms [J]. Sensors, 2021, 21(13): 4544. DOI: 10.3390/s21134544. |
[13] |
CHEN H, WAN Q L, ZHANG B, et al. Short-term load forecasting based on asymmetric ARCH models [C]//Anon. IEEE PES General Meeting, Minneapolis, July 25-29, 2010. Minneapolis: IEEE, 2010: 1-6. DOI: 10.1109/PES.2010.5590185. |
[14] |
HOR C L, WATSON S J, MAJITHIA S. Daily load forecasting and maximum demand estimation using ARIMA and GARCH [C]//Anon. 2006 International Conference on Probabilistic Methods Applied to Power Systems, Stockholm, June 11-15, 2006. Stockholm: IEEE, 2006: 1-6. DOI: 10.1109/PMAPS.2006.36023. |
[15] |
LIU H P, SHI J. Applying ARMA-GARCH approaches to forecasting short-term electricity prices [J]. Energy economics, 2013, 37: 152-166. DOI: 10.1016/j.eneco.2013.02.006. |
[16] |
CORBA B S, EGRIOGLU E, DALAR A Z. AR-ARCH type artificial neural network for forecasting [J]. Neural processing letters, 2020, 51(1): 819-836. DOI: 10.1007/s11063-019-10117-6. |
[17] |
鲍海波, 吴阳晨, 张国应, 等. 基于特征加权Stacking集成学习的净负荷预测方法 [J]. 电力建设, 2022, 43(9): 104-116. DOI: 10.12204/j.issn.1000-7229.2022.09.011.
BAO H B, WU Y C, ZHANG G Y, et al. Net load forecasting method based on feature-weighted stacking ensemble learning [J]. Electric power construction, 2022, 43(9): 104-116. DOI: 10.12204/j.issn.1000-7229.2022.09.011. |
[18] |
郑侃, 魏煜锋, 文智胜, 等. 基于BP神经网络方法的风电场风速插补分析应用 [J]. 南方能源建设, 2021, 8(1): 51-55. DOI: 10.16516/j.gedi.issn2095-8676.2021.01.007.
ZHENG K, WEI Y F, WEN Z S, et al. Analysis and application of wind speed interpolation in wind farm based on BP neural network method [J]. Southern energy construction, 2021, 8(1): 51-55. DOI: 10.16516/j.gedi.issn2095-8676.2021.01.007. |
[19] |
RAHMAN S, BHATNAGAR R. An expert system based algorithm for short term load forecast [J]. IEEE transactions on power systems, 1988, 3(2): 392-399. DOI: 10.1109/59.192889. |
[20] |
YINSHENG S, CHUNXIAO L, BAO L, et al. Principal component analysis of short-term electric load forecast data based on grey forecast [J]. Journal of physics: conference series, 2020, 1486(6): 062031. DOI: 10.1088/1742-6596/1486/6/062031. |
[21] |
PANDIAN S C, DURAISWAMY K, RAJAN C C A, et al. Fuzzy approach for short term load forecasting [J]. Electric power systems research, 2006, 76(6-7): 541-548. DOI: 10.1016/j.jpgr.2005.09.018. |
[22] |
王克杰, 张瑞. 基于改进BP神经网络的短期电力负荷预测方法研究 [J]. 电测与仪表, 2019, 56(24): 115-121. DOI: 10.19753/j.issn1001-1390.2019.024.019.
WANG K J, ZHANG R. Research on short-term power load forecasting method based on improved BP neural network [J]. Electrical measurement & instrumentation, 2019, 56(24): 115-121. DOI: 10.19753/j.issn1001-1390.2019.024.019. |
[23] |
张静, 石鑫. 基于改进MOPSO-BP算法的短期电力负荷预测研究 [J]. 电力学报, 2019, 34(6): 556-563. DOI: 10.13357/j.cnki.jep.002844.
ZHANG J, SHI X. Short-term power load forecasting based on improved MOPSO-BP algorithm [J]. Journal of electric power, 2019, 34(6): 556-563. DOI: 10.13357/j.cnki.jep.002844. |
[24] |
LIANG Y, NIU D X, HONG W C. Short term load forecasting based on feature extraction and improved general regression neural network model [J]. Energy, 2019, 166: 653-663. DOI: 10.1016/j.energy.2018.10.119. |
[25] |
刘岩, 彭鑫霞, 郑思达. 基于改进LS-SVM的短期电力负荷预测方法研究 [J]. 电测与仪表, 2021, 58(5): 176-181. DOI: 10.19753/j.issn1001-1390.2021.05.026.
LIU Y, PENG X X, ZHENG S D. Research on short-term power load forecasting method based on improved LS-SVM [J]. Electrical measurement & instrumentation, 2021, 58(5): 176-181. DOI: 10.19753/j.issn1001-1390.2021.05.026. |
[26] |
RYU S, NOH J, KIM H. Deep neural network based demand side short term load forecasting [J]. Energies, 2017, 10(1): 3. DOI: 10.3390/en10010003. |
[27] |
KONG W C, DONG Z Y, JIA Y W, et al. Short-term residential load forecasting based on LSTM recurrent neural network [J]. IEEE transactions on smart grid, 2019, 10(1): 841-851. DOI: 10.1109/TSG.2017.2753802. |
[28] |
SUN G P, JIANG C W, WANG X, et al. Short‐term building load forecast based on a data‐mining feature selection and LSTM‐RNN method [J]. IEEJ transactions on electrical and electronic engineering, 2020, 15(7): 1002-1010. DOI: 10.1002/tee.23144. |
[29] |
彭文, 王金睿, 尹山青. 电力市场中基于Attention-LSTM的短期负荷预测模型 [J]. 电网技术, 2019, 43(5): 1745-1751. DOI: 10.13335/j.1000-3673.pst.2018.1554.
PENG W, WANG J R, YIN S Q. Short-term load forecasting model based on attention-LSTM in electricity market [J]. Power system technology, 2019, 43(5): 1745-1751. DOI: 10.13335/j.1000-3673.pst.2018.1554. |
[30] |
陆继翔, 张琪培, 杨志宏, 等. 基于CNN-LSTM混合神经网络模型的短期负荷预测方法 [J]. 电力系统自动化, 2019, 43(8): 131-137. DOI: 10.7500/AEPS20181012004.
LU J X, ZHANG Q P, YANG Z H, et al. Short-term load forecasting method based on CNN-LSTM hybrid neural network model [J]. Automation of electric power systems, 2019, 43(8): 131-137. DOI: 10.7500/AEPS20181012004. |
[31] |
HE F F, ZHOU J Z, FENG Z K, et al. A hybrid short-term load forecasting model based on variational mode decomposition and long short-term memory networks considering relevant factors with Bayesian optimization algorithm [J]. Applied energy, 2019, 237: 103-116. DOI: 10.1016/j.apenergy.2019.01.055. |
[32] |
BAHRAMI S, HOOSHMAND R A, PARASTEGARI M. Short term electric load forecasting by wavelet transform and grey model improved by PSO (Particle Swarm Optimization) algorithm [J]. Energy, 2014, 72: 434-442. DOI: 10.1016/j.energy.2014.05.065. |
[33] |
GHASEMI A, SHAYEGHI H, MORADZADEH M, et al. A novel hybrid algorithm for electricity price and load forecasting in smart grids with demand-side management [J]. Applied energy, 2016, 177: 40-59. DOI: 10.1016/j.apenergy.2016.05.083. |
[34] |
LI S, GOEL L, WANG P. An ensemble approach for short-term load forecasting by extreme learning machine [J]. Applied energy, 2016, 170: 22-29. DOI: 10.1016/j.apenergy.2016.02.114. |
[35] |
FAN X Q, ZHU Y L. The application of empirical mode decomposition and gene expression programming to short-term load forecasting [C]//Anon. Sixth International Conference on Natural Computation, Yantai, August 10-12, 2010. Yantai: IEEE, 2010: 4331-4334. DOI: 10.1109/ICNC.2010.5583605. |
[36] |
李秀昊, 刘怀西, 张智勇, 等. 基于VMD-LSTM的超短期风向多步预测 [J]. 南方能源建设, 2023, 10(1): 29-38. DOI: 10.16516/j.gedi.issn2095-8676.2023.01.004.
LI X H, LIU H X, ZHANG Z Y, et al. Very short-term wind direction multistep forecast based on VMD-LSTM [J]. Southern energy construction, 2023, 10(1): 29-38. DOI: 10.16516/j.gedi.issn2095-8676.2023.01.004. |
[37] |
孔祥玉, 李闯, 郑锋, 等. 基于经验模态分解与特征相关分析的短期负荷预测方法 [J]. 电力系统自动化, 2019, 43(5): 46-52. DOI: 10.7500/AEPS20180404008.
KONG X Y, LI C, ZHENG F, et al. Short-term load forecasting method based on empirical mode decomposition and feature correlation analysis [J]. Automation of electric power systems, 2019, 43(5): 46-52. DOI: 10.7500/AEPS20180404008. |
[38] |
邓带雨, 李坚, 张真源, 等. 基于EEMD-GRU-MLR的短期电力负荷预测 [J]. 电网技术, 2020, 44(2): 593-602. DOI: 10.13335/j.1000-3673.pst.2019.0113.
DENG D Y, LI J, ZHANG Z Y, et al. Short-term electric load forecasting based on EEMD-GRU-MLR [J]. Power system technology, 2020, 44(2): 593-602. DOI: 10.13335/j.1000-3673.pst.2019.0113. |
[39] |
梁智, 孙国强, 李虎成, 等. 基于VMD与PSO优化深度信念网络的短期负荷预测 [J]. 电网技术, 2018, 42(2): 598-606. DOI: 10.13335/j.1000-3673.pst.2017.0937.
LIANG Z, SUN G Q, LI H C, et al. Short-term load forecasting based on VMD and PSO optimized deep belief network [J]. Power system technology, 2018, 42(2): 598-606. DOI: 10.13335/j.1000-3673.pst.2017.0937. |
[40] |
刘雨薇. 基于VMD和改进LSTM的短期电力负荷预测研究 [D]. 武汉: 湖北工业大学, 2020. DOI: 10.27131/d.cnki.ghugc.2020.000099.
LIU Y W. Research on short-term power load forecasting based on VMD and improved LSTM [D]. Wuhan: Hubei University of Technology, 2020. DOI: 10.27131/d.cnki.ghugc.2020.000099. |
[41] |
AEMO. Australian energy market operator electricity price & demand [EB/OL]. https://www.aemo.com.au/. |
[42] |
杨茂, 陈郁林. 基于EMD分解和集对分析的风电功率实时预测 [J]. 电工技术学报, 2016, 31(21): 86-93. DOI: 10.3969/j.issn.1000-6753.2016.21.010.
YANG M, CHEN Y L. Real-time prediction for wind power based on EMD and set pair analysis [J]. Transactions of China electrotechnical society, 2016, 31(21): 86-93. DOI: 10.3969/j.issn.1000-6753.2016.21.010. |
[43] |
RAZA M Q, KHOSRAVI A. A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings [J]. Renewable and sustainable energy reviews, 2015, 50: 1352-1372. DOI: 10.1016/j.rser.2015.04.065. |
[44] |
KUSTER C, REZGUI Y, MOURSHED M. Electrical load forecasting models: a critical systematic review [J]. Sustainable cities and society, 2017, 35: 257-270. DOI: 10.1016/j.scs.2017.08.009. |
[45] |
严雪颖, 秦川, 鞠平, 等. 负荷功率模型的最优特征选择研究 [J]. 电力工程技术, 2021, 40(3): 84-91. DOI: 10.12158/j.2096-3203.2021.03.013.
YAN X Y, QIN C, JU P, et al. Optimal feature selection of load power models [J]. Electric power engineering technology, 2021, 40(3): 84-91. DOI: 10.12158/j.2096-3203.2021.03.013. |