[1] 张振宇, 王文倬, 王智伟, 等. 跨区直流外送模式对新能源消纳的影响分析及应用 [J]. 电力系统自动化, 2019, 43(11): 174-180. DOI:  10.7500/AEPS20180808002.

ZHANG Z Y, WANG W Z, WANG Z W, et al. Impact analysis and application of cross-region HVDC delivery mode in renewable energy accommodation [J]. Automation of electric power systems, 2019, 43(11): 174-180. DOI:  10.7500/AEPS20180808002.
[2] 舒印彪, 张智刚, 郭剑波, 等. 新能源消纳关键因素分析及解决措施研究 [J]. 中国电机工程学报, 2017, 37(1): 1-9. DOI:  10.13334/j.0258-8013.pcsee.162555.

SHU Y B, ZHANG Z G, GUO J B, et al. Study on key factors and solution of renewable energy accommodation [J]. Proceedings of the CSEE, 2017, 37(1): 1-9. DOI:  10.13334/j.0258-8013.pcsee.162555.
[3] 申安, 董剑敏, 李露阳. ±800 kV换流站造价结构及投资水平分析 [J]. 南方能源建设, 2020, 7(3): 119-124. DOI:  10.16516/j.gedi.issn2095-8676.2020.03.016.

SHEN A, DONG J M, LI L Y. Analysis on cost structure and investment level of ±800 kV converter stations [J]. Southern energy construction, 2020, 7(3): 119-124. DOI:  10.16516/j.gedi.issn2095-8676.2020.03.016.
[4] 谢惠藩, 李桂源, 徐光虎, 等. 大容量特高压多端混合直流实际运行关键特性分析 [J]. 南方电网技术, 2022, 16(2): 50-57. DOI:  10.13648/j.cnki.issn1674-0629.2022.02.007.

XIE H F, LI G Y, XU G H, et al. Analysis of key operation characteristics of high-capacity multi-terminal hybrid UHVDC [J]. Southern power system technology, 2022, 16(2): 50-57. DOI:  10.13648/j.cnki.issn1674-0629.2022.02.007.
[5] 徐春婷. 同步调相机对直流输电系统电压稳定性的影响研究 [D]. 哈尔滨: 哈尔滨理工大学, 2020. DOI:  10.27063/d.cnki.ghlgu.2020.000512.

XU C T. Research on the influence of synchronous condenser on voltage stability of HVDC transmission system [D]. Harbin: Harbin University of Science and Technology, 2020. DOI:  10.27063/d.cnki.ghlgu.2020.000512.
[6] 张冬清, 徐玲玲, 李彦龙, 等. 基于调相机的LCC-HVDC换流站无功优化与双层协调策略研究 [J]. 南方能源建设, 2023, 10(5): 24-33. DOI:  10.16516/j.gedi.issn2095-8676.2023.05.004.

ZHANG D Q, XU L L, LI Y L, et al. LCC-HVDC converter station reactive power optimization and two-layer coordination strategy research based on synchronous condenser [J]. Southern energy construction, 2023, 10(5): 24-33. DOI:  10.16516/j.gedi.issn2095-8676.2023.05.004.
[7] 郭知非, 郑秀波, 姚文峰. 多直流馈入受端电网交直流相互影响分析框架 [J]. 南方能源建设, 2020, 7(1): 101-106. DOI:  10.16516/j.gedi.issn2095-8676.2020.01.016.

GUO Z F, ZHENG X B, YAO W F. AC/DC interaction analysis framework for load center power grids with multiple HVDC infeeds [J]. Southern energy construction, 2020, 7(1): 101-106. DOI:  10.16516/j.gedi.issn2095-8676.2020.01.016.
[8] 贺静波, 庄伟, 许涛, 等. 暂态过电压引起风电机组连锁脱网风险分析及对策 [J]. 电网技术, 2016, 40(6): 1839-1844. DOI:  10.13335/j.1000-3673.pst.2016.06.034.

HE J B, ZHUANG W, XU T, et al. Study on cascading tripping risk of wind turbines caused by transient overvoltage and its countermeasures [J]. Power system technology, 2016, 40(6): 1839-1844. DOI:  10.13335/j.1000-3673.pst.2016.06.034.
[9] 王峰, 刘天琪, 丁媛媛, 等. 直流闭锁引起的暂态过电压计算方法及其影响因素分析 [J]. 电网技术, 2016, 40(10): 3059-3065. DOI:  10.13335/j.1000-3673.pst.2016.10.019.

WANG F, LIU T Q, DING Y Y, et al. Calculation method and influencing factors of transient overvoltage caused by HVDC block [J]. Power system technology, 2016, 40(10): 3059-3065. DOI:  10.13335/j.1000-3673.pst.2016.10.019.
[10] 田一淳. 电网无功补偿技术研究现状分析 [J]. 通信电源技术, 2019, 36(5): 39-43. DOI:  10.19399/j.cnki.tpt.2019.05.013.

TIAN Y C. Analysis of research status of reactive power compensation technology in power grid [J]. Telecom power technology, 2019, 36(5): 39-43. DOI:  10.19399/j.cnki.tpt.2019.05.013.
[11] 张彦凯, 魏久升, 史玉杰. 新型同步调相机动态无功特性分析研究 [J]. 信息技术与网络安全, 2019, 38(1): 82-86. DOI:  10.19358/j.issn.2096-5133.2019.01.017.

ZHANG Y K, WEI J S, SHI Y J. Analysis talk on dynamic reactive power characteristic of new type synchronous condense [J]. Information technology and network security, 2019, 38(1): 82-86. DOI:  10.19358/j.issn.2096-5133.2019.01.017.
[12] 戴庆忠. 同步调相机特性及应用 [J]. 东方电气评论, 2016, 30(4): 47-51. DOI:  10.13661/j.cnki.issn1001-9006.2016.04.011.

DAI Q Z. Extensive talk on synchronous condenser [J]. Dongfang electric review, 2016, 30(4): 47-51. DOI:  10.13661/j.cnki.issn1001-9006.2016.04.011.
[13] 赵琪龙. 大直流弱送端系统的调相机关键参数及无功策略优化方案研究 [J]. 长春工程学院学报(自然科学版), 2018, 19(1): 35-39. DOI:  10.3969/j.issn.1009-8984.2018.01.009.

ZHAO Q L. The study on key parameters and reactive power strategy optimization to a weak sending system in large direct current condenser [J]. Journal of Changchun Institute of Technology (Natural Sciences Edition), 2018, 19(1): 35-39. DOI:  10.3969/j.issn.1009-8984.2018.01.009.
[14] 郭一兵, 凌在汛, 崔一铂, 等. 特高压交直流系统动态无功支撑用大型调相机运行需求分析 [J]. 湖北电力, 2016, 40(5): 1-4, 34. DOI:  10.19308/j.hep.2016.05.001.

GUO Y B, LING Z X, CUI Y B, et al. Characteristics analysis of large synchronous condenser for UHV DC project [J]. Hubei electric power, 2016, 40(5): 1-4, 34. DOI:  10.19308/j.hep.2016.05.001.
[15] 赵一琰, 华文, 邓晖, 等. 调相机接入对浙江电网的影响研究 [J]. 浙江电力, 2018, 37(1): 8-12. DOI: 10.19585/j.zjdl.20180 1002.

ZHAO Y Y, HUA W, DENG H, et al. Research on the impact of synchronous condenser on Zhejiang power grid [J]. Zhejiang electric power, 2018, 37(1): 8-12. DOI: 10.19585/j.zjdl.20180 1002.
[16] 张开宇, 崔勇, 庄侃沁, 等. 加装同步调相机对多直流馈入受端电网的影响分析 [J]. 电力系统保护与控制, 2017, 45(22): 139-143. DOI:  10.7667/PSPC160632.

ZHANG K Y, CUI Y, ZHUANG K Q, et al. Analysis of the influence of synchronous condensers on receiving-end grid with multi-infeed HVDC [J]. Power system protection and control, 2017, 45(22): 139-143. DOI:  10.7667/PSPC160632.
[17] 阮羚, 王庆, 凌在汛, 等. 新型大容量调相机性能特点及工程应用 [J]. 中国电力, 2017, 50(12): 57-61. DOI:  10.11930/j.issn.1004-9649.201610028.

RUAN L, WANG Q, LING Z X, et al. Study on the performance feature and key engineering application of new large capacity condenser [J]. Electric power, 2017, 50(12): 57-61. DOI:  10.11930/j.issn.1004-9649.201610028.
[18] 蒋哲, 王安东, 田浩, 等. 基于新型电力系统的退役火电机组改调相机运行研究 [J]. 山东电力技术, 2022, 49(2): 17-22. DOI:  10.3969/j.issn.1007-9904.2022.02.004.

JIANG Z, WANG A D, TIAN H, et al. Research on synchronous condenser reconstructed from retired thermal power unit in the new power system [J]. Shandong electric power, 2022, 49(2): 17-22. DOI:  10.3969/j.issn.1007-9904.2022.02.004.
[19] 赵永正, 代海涛, 王安东, 等. 高压直流输电系统中调相机的启动与并网策略 [J]. 山东电力技术, 2017, 44(2): 20-22. DOI:  10.3969/j.issn.1007-9904.2017.02.005.

ZHAO Y Z, DAI H T, WANG A D, et al. Start-up and grid-connection strategies of phase modifiers in HVDC system [J]. Shandong electric power, 2017, 44(2): 20-22. DOI:  10.3969/j.issn.1007-9904.2017.02.005.
[20] 李志强, 种芝艺, 黄金军. 快速动态响应同步调相机动态无功特性试验验证 [J]. 中国电机工程学报, 2019, 39(23): 6877-6885. DOI:  10.13334/j.0258-8013.pcsee.190972.

LI Z Q, ZHONG Z Y, HUANG J J. Test verification of dynamic reactive power characteristics of fast dynamic response synchronous condenser [J]. Proceedings of the CSEE, 2019, 39(23): 6877-6885. DOI:  10.13334/j.0258-8013.pcsee.190972.
[21] 李锴, 邵德军, 徐友平, 等. 基于新一代调相机的多目标无功电压协调控制系统研究 [J]. 电网技术, 2019, 43(8): 2961-2967. DOI:  10.13335/j.1000-3673.pst.2018.1626.

LI K, SHAO D J, XU Y P, et al. Research on coordinated multi-objective reactive voltage control system based on new type synchronous condenser [J]. Power system technology, 2019, 43(8): 2961-2967. DOI:  10.13335/j.1000-3673.pst.2018.1626.
[22] 王雅婷, 张一驰, 周勤勇, 等. 新一代大容量调相机在电网中的应用研究 [J]. 电网技术, 2017, 41(1): 22-28. DOI:  10.13335/j.1000-3673.pst.2016.0715.

WANG Y T, ZHANG Y C, ZHOU Q Y, et al. Study on application of new generation large capacity synchronous condenser in power grid [J]. Power system technology, 2017, 41(1): 22-28. DOI:  10.13335/j.1000-3673.pst.2016.0715.
[23] 王梦玲, 陈刚, 张超峰, 等. 新一代大容量调相机在电网中的应用 [J]. 电工技术, 2020(8): 52-53, 56. DOI:  10.19768/j.cnki.dgjs.2020.08.021.

WANG M L, CHEN G, ZHANG C F, et al. Application of a new generation of large capacity synchronous condenser in power grid [J]. Electric engineering, 2020(8): 52-53, 56. DOI:  10.19768/j.cnki.dgjs.2020.08.021.
[24] 李兆伟, 吴雪莲, 曹路, 等. 抑制直流连续换相失败的调相机紧急控制 [J]. 电力系统自动化, 2018, 42(22): 91-97. DOI:  10.7500/AEPS20170726005.

LI Z W, WU X L, CAO L, et al. Emergency control of synchronous condenser to suppress DC continuous commutation failure [J]. Automation of electric power systems, 2018, 42(22): 91-97. DOI:  10.7500/AEPS20170726005.
[25] 陈卉, 刘颖, 赵龙生. 楼宇型天然气分布式能源系统的典型案例分析 [J]. 南方能源建设, 2021, 8(1): 25-30. DOI:  10.16516/j.gedi.issn2095-8676.2021.01.003.

CHEN H, LIU Y, ZHAO L S. Typical case analysis of the building-type CCHP system [J]. Southern energy construction, 2021, 8(1): 25-30. DOI:  10.16516/j.gedi.issn2095-8676.2021.01.003.
[26] 曹炜, 张甜, 傅业盛, 等. 同步调相机增强电力系统惯性和改善频率响应的研究与应用 [J]. 电力系统自动化, 2020, 44(3): 1-10. DOI: 10.7500/AEPS 20190429015.

CAO W, ZHANG T, FU Y S, et al. Research and application for increasing inertia and improving frequency response of power system by using synchronous condenser [J]. Automation of electric power systems, 2020, 44(3): 1-10. DOI: 10.7500/AEPS 20190429015.
[27] 刘炳辰. 高比例新能源送出系统动态无功补偿方案研究 [D]. 北京: 华北电力大学(北京), 2021. DOI:  10.27140/d.cnki.ghbbu.2021.001240.

LIU B C. Dynamic reactive power compensation scheme of high proportion new energy transmission system [D]. Beijing: North China Electric Power University (Beijing), 2021. DOI:  10.27140/d.cnki.ghbbu.2021.001240.
[28] 赵溶溶, 柯德平, 孙元章, 等. 考虑直流闭锁暂态过电压约束的送端电网换流站高效无功规划 [J]. 南方电网技术, 2022, 16(7): 10-21. DOI:  10.13648/j.cnki.issn1674-0629.2022.07.002.

ZHAO R R, KE D P, SUN Y Z, et al. Efficient reactive power planning of converter station in HVDC sending system considering HVDC blocking transient overvoltage constraint [J]. Southern power system technology, 2022, 16(7): 10-21. DOI:  10.13648/j.cnki.issn1674-0629.2022.07.002.
[29] 赫英明. 弱送端HVDC系统中同步调相机的性能分析 [D]. 哈尔滨: 哈尔滨理工大学, 2019. DOI:  10.27063/d.cnki.ghlgu.2019.000032.

HE Y M. Analysis of performance of synchronous condenser in weak sending system in HVDC [D]. Harbin: Harbin University of Science and Technology, 2019. DOI:  10.27063/d.cnki.ghlgu.2019.000032.
[30] 王庆, 沙江波, 杨鹏程, 等. 同步调相机对LCC-HVDC换相失败抵御能力的影响研究 [J]. 电工电能新技术, 2018, 37(5): 29-36. DOI:  10.12067/ATEEE1801046.

WANG Q, SHA J B, YANG P C, et al. Study of impact of SC on ability to defend commutation failure of LCC-HVDC [J]. Advanced technology of electrical engineering and energy, 2018, 37(5): 29-36. DOI:  10.12067/ATEEE1801046.
[31] 李东升. 应用于直流受端多馈入系统的同步调相机优化配置研究 [D]. 北京: 北京交通大学, 2022. DOI:  10.26944/d.cnki.gbfju.2022.002100.

LI D S. Research on the optimized configuration of synchronous condenser for HVDC receiver multi-infeed system [D]. Beijing: Beijing Jiaotong University, 2022. DOI:  10.26944/d.cnki.gbfju.2022.002100.
[32] 赵梦阳. 抑制直流扰动下风电场暂态过电压的调相机配置方法研究 [D]. 南京: 南京师范大学, 2021. DOI:  10.27245/d.cnki.gnjsu.2021.000779.

ZHAO M Y. Study on the configuration method of phase modulator to suppress the transient overvoltage of wind farm under DC disturbance [D]. Nanjing: Nanjing Normal University, 2021. DOI:  10.27245/d.cnki.gnjsu.2021.000779.
[33] 赵学明. 换相失败对含风电场的交直流混联系统过电压影响的研究 [D]. 天津: 天津大学, 2018. DOI:  10.27356/d.cnki.gtjdu.2018.000794.

ZHAO X M. Study on the influence of commutation failure on the overvoltage of AC/DC hybrid power system with wind farms [D]. Tianjin: Tianjin University, 2018. DOI:  10.27356/d.cnki.gtjdu.2018.000794.
[34] 陈波, 熊华强, 舒展, 等. 含同步调相机的直流换流站稳态无功协调控制策略 [J]. 电力自动化设备, 2020, 40(11): 156-164. DOI:  10.16081/j.epae.202009009.

CHEN B, XIONG H Q, SHU Z, et al. Steady-state reactive power coordinated control strategy for DC converter station with synchronous condenser [J]. Electric power automation equipment, 2020, 40(11): 156-164. DOI:  10.16081/j.epae.202009009.
[35] 窦宇宇, 林楠, 任正, 等. 风电机组大扰动暂态过电压机理分析及优化抑制 [J]. 山东电力技术, 2023, 50(5): 28-33, 82. DOI:  10.20097/j.cnki.issn1007-9904.2023.05.005.

DOU Y Y, LIN N, REN Z, et al. Mechanism analysis and optimization suppression strategy of large disturbance transient overvoltage of wind turbine [J]. Shandong electric power, 2023, 50(5): 28-33, 82. DOI:  10.20097/j.cnki.issn1007-9904.2023.05.005.
[36] 甘王伟, 陈道君, 崔挺, 等. 分布式调相机在特高压交直流混联电网的配置研究 [J]. 湖南电力, 2022, 42(3): 35-42, 72. DOI:  10.3969/j.issn.1008-0198.2022.03.007.

GAN W W, CHEN D J, CUI T, et al. Research on configuration of distributed synchronous condenser in UHV AC/DC hybrid power grid [J]. Hunan electric power, 2022, 42(3): 35-42, 72. DOI:  10.3969/j.issn.1008-0198.2022.03.007.
[37] 索之闻, 李晖, 张锋, 等. 高比例新能源直流送端系统分布式调相机优化配置 [J]. 电力系统保护与控制, 2022, 50(23): 133-141. DOI:  10.19783/j.cnki.pspc.220250.

SUO Z W, LI H, ZHANG F, et al. Optimal configuration of a distributed synchronous condenser for an HVDC sending-end system with a high-proportion of renewable energy [J]. Power system protection and control, 2022, 50(23): 133-141. DOI:  10.19783/j.cnki.pspc.220250.