[1] |
卓鹏, 刘强, 赵龙, 等. 复合材料褶皱与试件性能的关系研究 [J]. 航空制造技术, 2014(15): 101-102, 105. DOI: 10.16080/j.issn1671-833x.2014.15.014.
ZHUO P, LIU Q, ZHAO L, et al. Experimental investigation on the rrelationship between wrinkles and properties of composite laminates [J]. Aeronautical manufacturing technology, 2014(15): 101-102, 105. DOI: 10.16080/j.issn1671-833x.2014.15.014. |
[2] |
王冰佳, 赵勇, 王杰彬. 风力机叶片褶皱机理及预防措施研究 [J]. 电站系统工程, 2018, 34(1): 62-64.
WANG B J, ZHAO Y, WANG J B. Study on mechanism and precaution of fold in wind turbine blade [J]. Power system engineering, 2018, 34(1): 62-64. |
[3] |
赵春妮, 刘清, 陈文光, 等. 不同尺寸褶皱对风电叶片主梁性能的影响研究 [J]. 风能, 2020(5): 90-93. DOI: 10.3969/j.issn.1674-9219.2020.05.027.
ZHAO C N, LIU Q, CHEN W G, et al. Research on the effect of different size folds on the performance of wind turbine blade main beam [J]. Wind energy, 2020(5): 90-93. DOI: 10.3969/j.issn.1674-9219.2020.05.027. |
[4] |
高康, 陶伟文, 刘奇星, 等. 典型叶根褶皱对风电叶片强度影响的初步研究 [J]. 玻璃钢/复合材料, 2017(10): 58-61. DOI: 10.3969/j.issn.1003-0999.2017.10.010.
GAO K, TAO W W, LIU Q X, et al. Initial study of effects on strength of wind turbine blade with typical root waviness [J]. Fiber reinforced plastics/composites, 2017(10): 58-61. DOI: 10.3969/j.issn.1003-0999.2017.10.010. |
[5] |
靳交通, 邓航, 侯彬彬, 等. 风电叶片试验中褶皱的影响分析及修补方案的可靠性验证 [J]. 机械设计与研究, 2020, 36(3): 56-59. DOI: 10.13952/j.cnki.jofmdr.2020.0102.
JIN J T, DENG H, HOU B B, et al. Influences analysis of wrinkles and reliability verification of repair method in the wind turbine blade test [J]. Machine design & research, 2020, 36(3): 56-59. DOI: 10.13952/j.cnki.jofmdr.2020.0102. |
[6] |
沈臣, 周勃, 李菲, 等. 褶皱对风力机叶片主梁复合材料疲劳性能研究 [J]. 重型机械, 2022(1): 36-39. DOI: 10.13551/j.cnki.zxjxqk.2022.01.007.
SHEN C, ZHOU B, LI F, et al. Study on the effect of folds on the fatigue properties of wind turbine blade girder composite materials [J]. Heavy machinery, 2022(1): 36-39. DOI: 10.13551/j.cnki.zxjxqk.2022.01.007. |
[7] |
何成智, 马小军, 李阳阳, 等. 褶皱对玻璃钢疲劳性能的影响 [J]. 玻璃钢/复合材料, 2017(10): 53-57. DOI: 10.3969/j.issn.1003-0999.2017.10.009.
HE C Z, MA X J, LI Y Y, et al. The effect of folding on the fatigue properties of glass fiber reinforced plastics [J]. Fiber reinforced plastics/composites, 2017(10): 53-57. DOI: 10.3969/j.issn.1003-0999.2017.10.009. |
[8] |
孔魁, 周晓亮, 程明哲. 风电叶片建模及结构分析与测试 [J]. 机电工程技术, 2018, 47(5): 45-48. DOI: 10.3969/j.issn.1009-9492.2018.05.014.
KONG K, ZHOU X L, CHENG M Z. Structural modeling analysis and testing of wind turbine rotor blade [J]. Mechanical & electrical engineering technology, 2018, 47(5): 45-48. DOI: 10.3969/j.issn.1009-9492.2018.05.014. |
[9] |
Germanischer Lloyd. Guideline for the certification of wind turbines: GL 2010 [S]. Hamburg: Germanischer Lloyd, 2010. |
[10] |
徐立军, 王维庆. 复合材料风电叶片结构强度非线性分析 [J]. 重庆大学学报, 2021, 44(2): 13-24. DOI: 10.11835/j.issn.1000-582X.2020.203.
XU L J, WANG W Q. Nonlinear analysis of the structural strength of a composite wind turbine blade [J]. Journal of Chongqing University, 2021, 44(2): 13-24. DOI: 10.11835/j.issn.1000-582X.2020.203. |
[11] |
郑玉巧, 张岩, 魏泰. 风力发电机叶片结构设计与动力学 [M]. 武汉: 华中科技大学出版社, 2022: 37.
ZHENG Y Q, ZHANG Y, WEI T. Structural design and dynamics for wind turbine blades [M]. Wuhan: Huazhong University of Science & Technology Press, 2022: 37. |
[12] |
International Electrotechnical Commission. Wind energy generation systems-part1: design requirements: IEC 61400-1 [S]. Switzerland: International Electrotechnical Commission, 2019. |
[13] |
赵春妮, 刘清, 陈文光, 等. 风电叶片后缘建模方法对屈曲稳定性的影响 [J]. 复合材料科学与工程, 2020(5): 100-104. DOI: 10.3969/j.issn.1003-0999.2020.05.016.
ZHAO C N, LIU Q, CHEN W G, et al. The effects of wind turbine blade trailing edge modeling way on buckling [J]. Composites science and engineering, 2020(5): 100-104. DOI: 10.3969/j.issn.1003-0999.2020.05.016. |
[14] |
袁巍华, 吴玉国, 王国付, 等. 风电叶片尾缘结构稳定性研究 [J]. 玻璃钢/复合材料, 2018(1): 12-17. DOI: 10.3969/j.issn.1003-0999.2018.01.002.
YUAN W H, WU Y G, WANG G F, et al. Study on the stability of wind turbine blade trailing edge strcture [J]. Fiber reinforced plastics/composites, 2018(1): 12-17. DOI: 10.3969/j.issn.1003-0999.2018.01.002. |
[15] |
阳雪兵, 沈意平, 李卉. 5 MW风力机叶片结构力学特性有限元分析 [J]. 机械研究与应用, 2018, 31(4): 42-45. DOI: 10.16576/j.cnki.1007-4414.2018.04.014.
YANG X B, SHEN Y P, LI H. Finite element analysis on structural mechanical characteristics of the 5 MW wind turbine blade [J]. Mechanical research & application, 2018, 31(4): 42-45. DOI: 10.16576/j.cnki.1007-4414.2018.04.014. |
[16] |
熊磊. 大型风力机叶片的疲劳寿命模糊预测方法研究 [D]. 重庆: 重庆大学, 2016.
XIONG L. Study on the fuzzy fatigue life prediction of large wind turbine blades [D]. Chongqing: Chongqing University, 2016. |
[17] |
骆传龙, 李秀海, 李军向, 等. 风电叶片摆振疲劳损伤分析与补强维修 [J]. 玻璃纤维, 2022(6): 7-11. DOI: 10.13354/j.cnki.cn32-1129/tq.2022.06.007.
LUO C L, LI X H, LI J X, et al. Edgewise fatigue analysis of wind turbine blade and structural strengthening [J]. Fiber glass, 2022(6): 7-11. DOI: 10.13354/j.cnki.cn32-1129/tq.2022.06.007. |
[18] |
International Electrotechnical Commission. Wind turbines-part 23: full-scale structural testing of rotor blades: IEC 61400-23 [S]. Switzerland: International Electrotechnical Commission, 2014. |
[19] |
陆亮, 吴海军, 乌建中. 全尺寸风机叶片疲劳测试技术与弯矩匹配方法研究进展综述 [J]. 液压与气动, 2020(2): 1-8. DOI: 10.11832/j.issn.1000-4858.2020.02.001.
LU L, WU H J, WU J Z. Review of fatigue testing technology and bending moment matching method of full-scale wind turbine blades [J]. Chinese hydraulics & pneumatics, 2020(2): 1-8. DOI: 10.11832/j.issn.1000-4858.2020.02.001. |
[20] |
杨海江, 李军向, 李秀海. 风电机组叶片疲劳测试加载系统激振力及能量消耗分析 [J]. 风能, 2020(2): 88-92. DOI: 10.3969/j.issn.1674-9219.2020.02.024.
YANG H J, LI J X, LI X H. Analysis of excitation force and energy consumption of loading system for wind turbine blade fatigue test [J]. Wind energy, 2020(2): 88-92. DOI: 10.3969/j.issn.1674-9219.2020.02.024. |