[1] 高志远, 张晶, 庄卫金, 等. 关于新型电力系统部分特点的思考 [J]. 电力自动化设备, 2023, 43(6): 137-143,151. DOI:  10.16081/j.epae.202209007.

GAO Z Y, ZHANG J, ZHUANG W J, et al. Thoughts on some characteristics of new style power system [J]. Electric power automation equipment, 2023, 43(6): 137-143,151. DOI:  10.16081/j.epae.202209007.
[2] 王新宝, 葛景, 韩连山, 等. 构网型储能支撑新型电力系统建设的思考与实践 [J]. 电力系统保护与控制, 2023, 51(5): 172-179. DOI:  10.19783/j.cnki.pspc.221158.

WANG X B, GE J, HAN L S, et al. Theory and practice of grid-forming BESS supporting the construction of a new type of power system [J]. Power system protection and control, 2023, 51(5): 172-179. DOI:  10.19783/j.cnki.pspc.221158.
[3] 邓秋根, 曹建华. 基于"双碳"战略的新型电力系统储能方案研究 [J]. 电工技术, 2023(10): 49-51. DOI:  10.19768/j.cnki.dgjs.2023.10.013.

DENG Q G, CAO J H. Research on new power system energy storage scheme based on double carbon strategy [J]. Electric engineering, 2023(10): 49-51. DOI:  10.19768/j.cnki.dgjs.2023.10.013.
[4] 林晓珊, 李勇. "双碳"背景下的储能技术分析 [J]. 电工技术, 2023(4): 55-57,130. DOI:  10.19768/j.cnki.dgjs.2023.04.017.

LIN X S, LI Y. Analysis of energy storage technology under the background of "dual carbon" [J]. Electric engineering, 2023(4): 55-57,130. DOI:  10.19768/j.cnki.dgjs.2023.04.017.
[5] 陈海生, 李泓, 徐玉杰, 等. 2022年中国储能技术研究进展 [J]. 储能科学与技术, 2023, 12(5): 1516-1552. DOI:  10.19799/j.cnki.2095-4239.2023.0330.

CHEN H S, LI H, XU Y J, et al. Research progress on energy storage technologies of China in 2022 [J]. Energy storage science and technology, 2023, 12(5): 1516-1552. DOI:  10.19799/j.cnki.2095-4239.2023.0330.
[6] 李杨楠, 张国昀, 程一步. 不同储能技术的经济性及应用前景分析 [J]. 石油石化绿色低碳, 2023, 8(3): 1-8. DOI:  10.3969/j.issn.2095-0942.2023.03.001.

LI Y N, ZHANG G Y, CHENG Y B. Economic analysis and applications prospect of energy storage technologies [J]. Energy conservation and emission reduction in petroleum and petrochemical industry, 2023, 8(3): 1-8. DOI:  10.3969/j.issn.2095-0942.2023.03.001.
[7] 王富强, 王汉斌, 武明鑫, 等. 压缩空气储能技术与发展 [J]. 水力发电, 2022, 48(11): 10-15. DOI:  10.3969/j.issn.0559-9342.2022.11.003.

WANG F Q, WANG H B, WU M X, et al. Compressed air energy storage technology and development [J]. Water power, 2022, 48(11): 10-15. DOI:  10.3969/j.issn.0559-9342.2022.11.003.
[8] 李季, 黄恩和, 范仁东, 等. 压缩空气储能技术研究现状与展望 [J]. 汽轮机技术, 2021, 63(2): 86-89,126. DOI:  10.3969/j.issn.1001-5884.2021.02.002.

LI J, HUANG E H, FAN R D, et al. Research status and development prospects of compressed air energy storage technology [J]. Turbine technology, 2021, 63(2): 86-89,126. DOI:  10.3969/j.issn.1001-5884.2021.02.002.
[9] MEI S W, WANG J J, TIAN F, et al. Design and engineering implementation of non-supplementary fired compressed air energy storage system: TICC-500 [J]. Science China technological sciences, 2015, 58(4): 600-611. DOI:  10.1007/s11431-015-5789-0.
[10] 梅生伟, 李瑞, 陈来军, 等. 先进绝热压缩空气储能技术研究进展及展望 [J]. 中国电机工程学报, 2018, 38(10): 2893-2907. DOI:  10.13334/j.0258-8013.pcsee.172138.

MEI S W, LI R, CHEN L J, et al. An overview and outlook on advanced adiabatic compressed air energy storage technique [J]. Proceedings of the CSEE, 2018, 38(10): 2893-2907. DOI:  10.13334/j.0258-8013.pcsee.172138.
[11] 梅生伟, 公茂琼, 秦国良, 等. 基于盐穴储气的先进绝热压缩空气储能技术及应用前景 [J]. 电网技术, 2017, 41(10): 3392-3399. DOI:  10.13335/j.1000-3673.pst.2017.1992.

MEI S W, GONG M Q, QIN G L, et al. Advanced adiabatic compressed air energy storage system with salt cavern air storage and its application prospects [J]. Power system technology, 2017, 41(10): 3392-3399. DOI:  10.13335/j.1000-3673.pst.2017.1992.
[12] 陈海生, 刘金超, 郭欢, 等. 压缩空气储能技术原理 [J]. 储能科学与技术, 2013, 2(2): 146-151. DOI:  10.3969/j.issn.2095-4239.2013.02.008.

CHEN H S, LIU J C, GUO H, et al. Technical principle of compressed air energy storage system [J]. Energy storage science and technology, 2013, 2(2): 146-151. DOI:  10.3969/j.issn.2095-4239.2013.02.008.
[13] 孙晓霞, 桂中华, 高梓玉, 等. 压缩空气储能系统动态运行特性 [J]. 储能科学与技术, 2023, 12(6): 1840-1853. DOI:  10.19799/j.cnki.2095-4239.2023.0181.

SUN X X, GUI Z H, GAO Z Y, et al. Dynamic characteristics of compressed air energy storage system [J]. Energy storage science and technology, 2023, 12(6): 1840-1853. DOI:  10.19799/j.cnki.2095-4239.2023.0181.
[14] 李阳海, 徐万兵, 张彪, 等. 压缩空气储能技术与应用 [J]. 湖北电力, 2022, 46(4): 1-7. DOI:  10.19308/j.hep.2022.04.001.

LI Y H, XU W B, ZHANG B, et al. Compressed air energy storage technology and its application [J]. Hubei electric power, 2022, 46(4): 1-7. DOI:  10.19308/j.hep.2022.04.001.
[15] 张新敬. 压缩空气储能系统若干问题的研究 [D]. 北京: 中国科学院研究生院(工程热物理研究所), 2011.

ZHANG X J. Investigation on compressed air energy storage system [D]. Beijing: University of Chinese Academy of Sciences (Institute of Engineering Thermophysics, Chinese Academy of Sciences), 2011.
[16] 郭祚刚, 马溪原, 雷金勇, 等. 压缩空气储能示范进展及商业应用场景综述 [J]. 南方能源建设, 2019, 6(3): 17-26. DOI:  10.16516/j.gedi.issn2095-8676.2019.03.003.

GUO Z G, MA X Y, LEI J Y, et al. Review on demonstration progress and commercial application scenarios of compressed air energy storage system [J]. Southern energy construction, 2019, 6(3): 17-26. DOI:  10.16516/j.gedi.issn2095-8676.2019.03.003.
[17] 何青, 王珂. 等温压缩空气储能技术及其研究进展 [J]. 热力发电, 2022, 51(8): 11-19. DOI:  10.19666/j.rlfd.202203042.

HE Q, WANG K. Research progress of isothermal compressed air energy storage technology [J]. Thermal power generation, 2022, 51(8): 11-19. DOI:  10.19666/j.rlfd.202203042.
[18] 肖力木, 高欣, 张世海, 等. 耦合LNG及ORC的液态空气储能系统热力学分析 [J]. 储能科学与技术, 2023, 12(1): 155-164. DOI:  10.19799/j.cnki.2095-4239.2022.0474.

XIAO L M, GAO X, ZHANG S H, et al. Thermodynamic analysis on the liquid air energy storage system with liquid natural gas and organic Rankine cycle [J]. Energy storage science and technology, 2023, 12(1): 155-164. DOI:  10.19799/j.cnki.2095-4239.2022.0474.
[19] 凌晨, 吴斌, 朱学成, 等. 350 MW级先进压缩空气储能系统建模与特性分析 [J]. 能源研究与利用, 2023,(5): 28-32. DOI:  10.16404/j.cnki.issn1001-5523.2023.05.008.

LING C, WU B, ZHU X C, et al. System modeling and performance analysis of 350 MW advanced adiabatic compressed air energy storage system [J]. Energy research & utilization, 2023,(5): 28-32. DOI:  10.16404/j.cnki.issn1001-5523.2023.05.008.
[20] 孙劲飚, 姚少勇, 周新军, 等. 先进绝热压缩空气储能系统的优化研究 [J]. 电力勘测设计, 2023,(7): 89-94. DOI:  10.13500/j.dlkcsj.issn1671-9913.2023.07.017.

SUN J B, YAO S Y, ZHOU X J, et al. Optimization research of advanced adiabatic compressed air energy storage system [J]. Electric power survey & design, 2023,(7): 89-94. DOI:  10.13500/j.dlkcsj.issn1671-9913.2023.07.017.
[21] 曹福林. 钛酸铋钠基超宽温区MLCC介质材料制备与介电性能研究 [D]. 西安: 西安理工大学, 2023. DOI:  10.27398/d.cnki.gxalu.2023.000417.

CAO F L. Preparation and dielectric properties of bismuth sodium titanate based MLCC dielectric materials [D]. Xi´an, Xi´an University of Technology, 2023. DOI:  10.27398/d.cnki.gxalu.2023.000417.
[22] 蒋志容, 侯彦硕, 丁平, 等. 水电洞室压缩空气储能地下储气库可行性分析 [J]. 四川水力发电, 2023, 42(增刊1): 22-28, 35.

JIANG Z R, HOU Y S, DING P, et al. Feasibility analysis of underground gas storage for compressed air energy storage in hydropower caverns [J]. Sichuan water power, 2023, 42(Suppl.1): 22-28, 35.
[23] 蒋中明, 唐栋, 李鹏, 等. 压气储能地下储气库选型选址研究 [J]. 南方能源建设, 2019, 6(3): 6-16. DOI:  10.16516/j.gedi.issn2095-8676.2019.03.002.

JIANG Z M, TANG D, LI P, et al. Research on selection method for the types and sites of underground repository for compressed air storage [J]. Southern energy construction, 2019, 6(3): 6-16. DOI:  10.16516/j.gedi.issn2095-8676.2019.03.002.
[24] 李小仨, 钱则刚, 杨启超, 等. 压缩空气储能技术现状分析 [J]. 流体机械, 2013, 41(8): 40-44. DOI:  10.3969/j.issn.1005-0329.2013.08.009.

LI X S, QIAN Z G, YANG Q C. Technique summarize and efficiency analysis of compressed air energy storage [J]. Fluid machinery, 2013, 41(8): 40-44. DOI:  10.3969/j.issn.1005-0329.2013.08.009.
[25] 李菲菲, 崔金栋, 汪羽晴, 等. 碳中和视角下新型储能产业与数字化耦合发展路径研究 [J/OL].情报科学:1-17. [2023-11-06]. https://link.cnki.net/urlid/22.1264.G2.20231102.1727.002.

LI F F, CUI J D, WANG Y Q, et al. The coupled development path of new energy storage industry and digitalization from the perspective of carbon neutral [J/OL]. Information science:1-17. [2023-11-06]. https://link.cnki.net/urlid/22.1264.G2.20231102.1727.002.
[26] 万明忠, 纪文栋, 商浩亮, 等. 压缩空气储能地下盐穴物探关键问题及处理技术 [J]. 南方能源建设, 2023, 10(2): 26-31. DOI:  10.16516/j.gedi.issn2095-8676.2023.02.004.

WAN M Z, JI W D, SHANG H L, et al. Key problems and techniques of geophysical exploration in underground salt cavern for compressed air energy storage [J]. Southern energy construction, 2023, 10(2): 26-31. DOI:  10.16516/j.gedi.issn2095-8676.2023.02.004.