[1] ZHOU X X. The development of power system and power system technology in China [C]// Anon. 1997 fourth international conference on advances in power system control, operation and management, Hong Kong, China, November 11-14, 1997. Hong Kong, China: IEEE, 1997: 14-17. DOI:  10.1049/cp:19971798.
[2] ESTEBAN M, LEARY D. Current developments and future prospects of offshore wind and ocean energy [J]. Applied energy, 2012, 90(1): 128-136. DOI:  10.1016/j.apenergy.2011.06.011.
[3] 王洪庆, 孙伟, 刘东华, 等. 海上风电大直径单桩自沉与溜桩分析 [J]. 南方能源建设, 2023, 10(1): 64-71. DOI:  10.16516/j.gedi.issn2095-8676.2023.01.008.

WANG H Q, SUN W, LIU D H, et al. Statistical analysis of self-weight penetration and pile running for large diameter monopiles in offshore wind farm [J]. Southern energy construction, 2023, 10(1): 64-71. DOI:  10.16516/j.gedi.issn2095-8676.2023.01.008.
[4] 校建东. 海上风电单桩基础地基加固技术研究 [J]. 南方能源建设, 2023, 10(4): 184-192. DOI:  10.16516/j.gedi.issn2095-8676.2023.04.019.

XIAO J D. Research on ground reinforcement technology of offshore wind power monopile foundation [J]. Southern energy construction, 2023, 10(4): 184-192. DOI:  10.16516/j.gedi.issn2095-8676.2023.04.019.
[5] TIMILSINA G R, VAN KOOTEN G C, NARBEL P A. Global wind power development: economics and policies [J]. Energy policy, 2013, 61: 642-652. DOI:  10.1016/j.enpol.2013.06.062.
[6] TABASSUM-ABBASI N, PREMALATHA M, ABBASI T, et al. Wind energy: increasing deployment, rising environmental concerns [J]. Renewable and sustainable energy reviews, 2014, 31: 270-288. DOI:  10.1016/j.rser.2013.11.019.
[7] PERVEEN R, KISHOR N, MOHANTY S R. Off-shore wind farm development: present status and challenges [J]. Renewable and sustainable energy reviews, 2014, 29: 780-792. DOI:  10.1016/j.rser.2013.08.108.
[8] JIANG Z Y. Installation of offshore wind turbines: a technical review [J]. Renewable and sustainable energy reviews, 2021, 139: 110576. DOI:  10.1016/j.rser.2020.110576.
[9] 王诗超, 刘嘉畅, 刘展志, 等. 海上风电产业现状及未来发展分析 [J]. 南方能源建设, 2023, 10(4): 103-112. DOI:  10.16516/j.gedi.issn2095-8676.2023.04.010.

WANG S C, LIU J C, LIU Z Z, et al. Analysis of current situation and future development of offshore wind power industry [J]. Southern energy construction, 2023, 10(4): 103-112. DOI:  10.16516/j.gedi.issn2095-8676.2023.04.010.
[10] KALLEHAVE D, THILSTED C L, LIINGAARD M A. Modification of the API p-y formulation of initial stiffness of sand [C]// Anon. Offshore site investigation and geotechnics: integrated technologies: present and future, London, UK, September 12-14, 2012. London: SUT, 2012: SUT-OSIG-12-50.
[11] BYRNE B W, BURD H J, ZDRAVKOVIĆ L, et al. PISA: new design methods for offshore wind turbine monopiles [J]. Revue franç aise de géotechnique, 2019(158): 3. DOI:  10.1051/geotech/2019009.
[12] 东方风力发电网. 莆田平海湾风电二期工程单桩成功制成 [EB/OL]. (2018-06-06) [2024-10-28]. http://www.eastwp.net/news/show.php?itemid=50752.

EASTWP. NET. Putian Pinghai bay wind power phase II project monopile successfully fabricated [EB/OL]. (2018-06-06) [2024-10-28]. http://www.eastwp.net/news/show.php?itemid=50752.
[13] LOTSBERG I, SIGURDSSON G, ARNESEN K, et al. Recommended design fatigue factors for reassessment of piles subjected to dynamic actions from driving [J]. Journal of offshore mechanics and arctic engineering, 2010, 132(4): 041603. DOI:  10.1115/1.4001418.
[14] CHUNG J, WALLERAND R, HÉLIAS-BRAULT M. Pile fatigue assessment during driving [J]. Procedia engineering, 2013, 66: 451-463. DOI:  10.1016/j.proeng.2013.12.098.
[15] 马骏, 孙肖菲, 孙立强, 等. 海上风电超大直径单桩可打性与沉桩疲劳损伤分析 [J]. 船海工程, 2022, 51(4): 105-109, 115. DOI:  10.3963/j.issn.1671-7953.2022.04.022.

MA J, SUN X F, SUN L Q, et al. Drivability and driving fatigue damage analysis of super large diameter mono-pile for offshore wind farm [J]. Ship & ocean engineering, 2022, 51(4): 105-109, 115. DOI:  10.3963/j.issn.1671-7953.2022.04.022.
[16] SALAMA M M, ELLIS N, HANNA S Y, et al. Pile driving dynamic loads on offshore structures [C]// Anon. Proceedings of the offshore technology conference, Houston, USA, May 2-5, 1988. Houston: OnePetro, 1988: 207-214. DOI:  10.4043/5704-MS.
[17] HUNT R J, CHAN J H C, DOYLE E H. Driving fatigue damage estimation for Ursa TLP 96" OD piles [C]// Anon. Proceedings of the ninth international offshore and polar engineering conference, Brest, France, May 30 - June 4, 1999. Brest: OnePetro, 1999: 684-692.
[18] BUITRAGO J, WONG P C. Fatigue design of driven piles for deepwater applications [C]// Anon. The thirteenth international offshore and polar engineering conference, Honolulu, Hawaii, USA, May 25-30, 2003. Honolulu: OnePetro, 2003.
[19] MORIYASU S, KOBAYASHI S I, MATSUMOTO T. Experimental study on friction fatigue of vibratory driven piles by in situ model tests [J]. Soils and foundations, 2018, 58(4): 853-865. DOI:  10.1016/j.sandf.2018.03.010.
[20] TAVASOLI O, GHAZAVI M. Driving behavior of stepped and tapered offshore piles due to hammer blows [J]. Marine georesources & geotechnology, 2020, 38(6): 633-646. DOI:  10.1080/1064119X.2019.1609631.
[21] CHRISOPOULOS S, VOGELSANG J. A finite element benchmark study based on experimental modeling of vibratory pile driving in saturated sand [J]. Soil dynamics and earthquake engineering, 2019, 122: 248-260. DOI:  10.1016/j.soildyn.2019.01.001.
[22] HAMANN T, QIU G, GRABE J. Application of a Coupled Eulerian-Lagrangian approach on pile installation problems under partially drained conditions [J]. Computers and geotechnics, 2015, 63: 279-290. DOI:  10.1016/j.compgeo.2014.10.006.
[23] BIENEN B, FAN S S, SCHRÖDER M, et al. Effect of the installation process on monopile lateral response [J]. Proceedings of the institution of civil engineers - geotechnical engineering, 2021, 174(5): 530-548. DOI:  10.1680/jgeen.20.00219.
[24] CHEN F Q, LIU L Y, LAI F W, et al. Numerical analyses of energy balance and installation mechanisms of large-diameter tapered monopiles by impact driving [J]. Ocean engineering, 2022, 266: 113017. DOI:  10.1016/j.oceaneng.2022.113017.
[25] 中华人民共和国住房和城乡建设部. 建筑基桩检测技术规范: JGJ 106—2014 [S]. 北京: 中国建筑工业出版社, 2014: 10.

Ministry of Housing and Urban-Rural Development of the People's Republic of China. Technical code for testing of building foundation piles: JGJ 106—2014 [S]. Beijing: China Architecture & Building Press, 2014: 10.
[26] BISHOP A W, HIGHT D W. The value of Poisson's ratio in saturated soils and rocks stressed under undrained conditions [J]. Géotechnique, 1977, 27(3): 369-384. DOI:  10.1680/geot.1977.27.3.369.
[27] 曾朋. 花岗岩残积土的压实特性及崩解特性研究 [D]. 广州: 华南理工大学, 2012.

ZENG P. A study on compaction characteristics and disintegration behavior of granite residual soil [D]. Guangzhou: South China University of Technology, 2012.
[28] 刘攀. 全风化花岗岩试验及本构模型研究 [D]. 广州: 华南理工大学, 2016.

LIU P. Experimental study and constitutive model of completely decomposed granite [D]. Guangzhou: South China University of Technology, 2016.
[29] XIAO Y J, CHEN F Q, DONG Y Z. Numerical investigation of soil plugging effect inside sleeve of cast-in-place piles driven by vibratory hammers in clays [J]. SpringerPlus, 2016, 5(1): 755. DOI:  10.1186/s40064-016-2423-y.
[30] RANDOLPH M F, MAY M, LEONG E C, et al. Soil plug response in open-ended pipe piles [J]. Journal of geotechnical engineering, 1992, 118(5): 743-759. DOI:  10.1061/(ASCE)0733-9410(1992)118:5(743).
[31] Veritas D D N. Fatigue design of offshore steel structures: DNV-RP-C203 [S]. [S.l.]: [s.n.], 2019.