[1] 王秀强. 风电行业发展图鉴: 跌宕起伏十年, 行稳致远 [J]. 能源, 2018(11): 136-141.

WANG X Q. Wind power industry development chart: ups and downs for ten years, steady to go far [J]. Energy, 2018(11): 136-141.
[2] 林楚. 秦海岩:上半年我国风电行业实现高质量发展 [N].机电商报,2023-08-07(A08). DOI:  10.28408/n.cnki.njdsb.2023.000345.

LIN C. QIN H Y: China's wind power industry achieved high-quality development in the first half of the year [N]. China meteorological society, mechanical and electrical business daily. 2023-08-07(A08). DOI:  10.28408/n.cnki.njdsb.2023.000345.
[3] 刘明, 阳雪兵, 周孝, 等. 兆瓦级风力发电机组偏航制动系统关键故障失效分析与整改措施 [C]//中国农业机械工业协会风力机械分会. 第四届中国风电后市场专题研讨会, 银川, 2017-05-25. [S.l.]: [s.n.], 2021: 222-225.

LIU M, YANG X B, ZHOU X, et al. Failure analysis and improvement measures of yaw braking system for MW wind turbine [C]// Wind Machinery Branch of China Agricultural Machinery Industry Association. The fourth china post-wind market symposium, Yinchuan, 2017-05-25. [S.l.]: [s.n], 2021: 222-225.
[4] 刘涛. 大型风力发电机偏航刹车装置的强度和防漏油措施的研究 [D]. 南昌: 南昌大学, 2021. DOI:  10.27232/d.cnki.gnchu.2021.001878.

LIU T. Research on the strength of yaw braking device and the measures of preventing oil leakage of large wind turbine [D]. Nanchang: Nanchang University, 2021. DOI:  10.27232/d.cnki.gnchu.2021.001878.
[5] 梁宏. 水平轴风电机组偏航振动异响问题分析和处理 [J]. 中国机械, 2013(6): 192-193.

LIANG H. Analysis and treatment of abnormal sound of yaw vibration in horizontal axis wind turbine [J]. Machine China, 2013(6): 192-193.
[6] 宁文钢, 姜宏伟, 王岳峰. 风力发电机组偏航系统常见故障分析 [J]. 机械管理开发, 2018, 33(11): 67-68, 116. DOI:  10.16525/j.cnki.cn14-1134/th.2018.11.030.

NING W G, JIANG H W, WANG Y F. Common faults analysis of wind turbine yaw system [J]. Mechanical management and development, 2018, 33(11): 67-68, 116. DOI:  10.16525/j.cnki.cn14-1134/th.2018.11.030.
[7] 廖明夫, 黄巍, 董礼, 等. 风力机偏航引起的失稳振动 [J]. 太阳能学报, 2009, 30(4): 488-492. DOI:  10.3321/j.issn:0254-0096.2009.04.016.

LIAO M F, HUANG W, DONG L, et al. Unstable torsional vibration of wind turbines caused by nacelle yawing [J]. Acta energiae solaris sinica, 2009, 30(4): 488-492. DOI:  10.3321/j.issn:0254-0096.2009.04.016.
[8] 吴丽娟, 唐进元, 陈思雨, 等. 风力发电机组偏航系统颤振分析 [J]. 太阳能学报, 2013, 34(10): 1708-1713. DOI:  10.3969/j.issn.0254-0096.2013.10.007.

WU L J, TANG J Y, CHEN S Y, et al. Chatter characteristics of yawing system in wind turbine [J]. Acta energiae solaris sinica, 2013, 34(10): 1708-1713. DOI:  10.3969/j.issn.0254-0096.2013.10.007.
[9] 李晓光, 赵萍, 韩德海. 主动偏航过程兆瓦级风机偏航系统失稳振动特性 [J]. 中南大学学报(自然科学版), 2013, 44(3): 949-954.

LI X G, ZHAO P, HAN D H. Characteristics of unstable vibration for megawatt wind power yaw system in process of active yaw [J]. Journal of Central South University (Nature Science Edition), 2013, 44(3): 949-954.
[10] 周新建, 李志强. 利用FMECA法的兆瓦级风力机故障模式分析 [J]. 华东交通大学学报, 2017, 34(1): 107-117. DOI:  10.16749/j.cnki.jecjtu.2017.01.017.

ZHOU X J, LI Z Q. Failure mode analysis of mw scale direct-drive permanent magnet wind power generator based on FMECA method [J]. Journal of East China Jiaotong University, 2017, 34(1): 107-117. DOI:  10.16749/j.cnki.jecjtu.2017.01.017.
[11] 王岳峰, 姜宏伟, 宁文钢, 等. 偏航制动摩擦片热力耦合计算及失效原因分析 [J]. 表面技术, 2018, 47(2): 111-116. DOI:  10.16490/j.cnki.issn.1001-3660.2018.02.018.

WANG Y F, JIANG H W, NING W G, et al. Thermo-mechanical coupled calculation and failure cause analysis of yaw brake friction plate [J]. Surface technology, 2018, 47(2): 111-116. DOI:  10.16490/j.cnki.issn.1001-3660.2018.02.018.
[12] 王正国, 莫继良, 陈光雄, 等. 沟槽型织构化表面摩擦噪声特性试验研究 [J]. 摩擦学学报, 2013, 33(3): 304-310.

WANG Z G, MO J L, CHEN G X, et al. An experimental study on friction noise properties of groove-textured surfaces [J]. Tribology, 2013, 33(3): 304-310.
[13] 白同庆, 王秀飞, 钟志刚, 等. 摩擦组元对粉末冶金摩擦材料摩擦性能的影响 [J]. 粉末冶金材料科学与工程, 2006, 11(6): 345-348. DOI:  10.3969/j.issn.1673-0224.2006.06.006.

BAI T Q, WANG X F, ZHONG Z G, et al. Effects of friction components on friction properties of powder metallurgy friction materials [J]. Materials science and engineering of powder metallurgy, 2006, 11(6): 345-348. DOI:  10.3969/j.issn.1673-0224.2006.06.006.
[14] 林娇, 高诚辉, 郑开魁, 等. 一种少金属树脂基摩擦材料的实验研究 [J]. 机械制造与自动化, 2019, 48(5): 48-50, 53. DOI:  10.19344/j.cnki.issn1671-5276.2019.05.012.

LIN J, GAO C H, ZHENG K K, et al. Experimental study of less metallic resin-based friction material [J]. Machine building & automation, 2019, 48(5): 48-50, 53. DOI:  10.19344/j.cnki.issn1671-5276.2019.05.012.
[15] 马保吉, 朱均, 高嵩. 芳纶纤维增强摩擦材料的摩擦学性能研究 [J]. 摩擦学学报, 2000, 20(4): 260-263. DOI:  10.3321/j.issn:1004-0595.2000.04.006.

MA B J, ZHU J, GAO S. Tribological properties of Kevlar pulp reinforced friction materials [J]. Tribology, 2000, 20(4): 260-263. DOI:  10.3321/j.issn:1004-0595.2000.04.006.
[16] PAN G Y, CHEN L. Impact analysis of brake pad backplate structure and friction lining material on disc-brake noise [J]. Advances in materials science and engineering, 2018(1): 7093978. DOI:  10.1155/2018/7093978.
[17] LAZZARI A, TONAZZI D, CONIDI G, et al. Experimental evaluation of brake pad material propensity to stick-slip and groan noise emission [J]. Lubricants, 2018, 6(4): 107. DOI:  10.3390/lubricants6040107.
[18] KULKARNI S, PATIL A, LOUIS N, et al. Investigation of disc brake squeal using FE simulation and experimentation [J]. International journal of scientific & engineering research, 2019, 10(5): 169-173.
[19] SCHLAGNER, VON WAGNER U. Characterization of disk brake noise behavior via measurement of friction forces [J]. Proceedings in applied mathematics and mechanics, 2009, 9(1): 59-62. DOI:  10.1002/pamm.200910016.
[20] BAO J S, LU L J, YIN Y, et al. Frictional properties and mechanisms of an organic-metal brake pair braking repeatedly in magnetic field [J]. Tribology transactions, 2018, 61(1): 1-11. DOI:  10.1080/10402004.2016.1267291.
[21] 董慧丽, 鲍久圣, 阴妍, 等. 盘式制动器摩擦噪声特性的试验分析 [J]. 摩擦学学报, 2020, 40(2): 175-184. DOI:  10.16078/j.tribology.2019108.

DONG H L, BAO J S, YIN Y, et al. Experimental analysis on friction noise of disc brake [J]. Tribology, 2020, 40(2): 175-184. DOI:  10.16078/j.tribology.2019108.