[1] 周孝信, 陈树勇, 鲁宗相, 等. 能源转型中我国新一代电力系统的技术特征 [J]. 中国电机工程学报, 2018, 38(7): 1893-1904. DOI:  10.13334/j.0258-8013.pcsee.180067.

ZHOU X X, CHEN S Y, LU Z X, et al. Technology features of the new generation power system in China [J]. Proceedings of the CSEE, 2018, 38(7): 1893-1904. DOI:  10.13334/j.0258-8013.pcsee.180067.
[2] 蔡旭, 杨仁炘, 周剑桥, 等. 海上风电直流送出与并网技术综述 [J]. 电力系统自动化, 2021, 45(21): 2-22. DOI:  10.7500/AEPS20210909007.

CAI X, YANG R X, ZHOU J Q, et al. Review on offshore wind power integration via DC transmission [J]. Automation of Electric Power Systems, 2021, 45(21): 2-22. DOI:  10.7500/AEPS20210909007.
[3] 魏书荣, 何之倬, 符杨, 等. 海上风电机组故障容错运行研究现状分析 [J]. 电力系统保护与控制, 2016, 44(9): 145-154. DOI:  10.7667/PSPC151108.

WEI S R, HE Z Z, FU Y, et al. Research status and prospect of offshore wind turbine fault tolerance [J]. Power System Protection and Control, 2016, 44(9): 145-154. DOI:  10.7667/PSPC151108.
[4] 朱黎. 海上风电为可再生能源发展的新领域 [J]. 新能源科技, 2021(12): 2-3. DOI:  10.3969/j.issn.2096-8809.2021.12.002.

ZHU L. Offshore wind power is a new field of renewable energy development [J]. New Energy Technology, 2021(12): 2-3. DOI:  10.3969/j.issn.2096-8809.2021.12.002.
[5] 李昊璋, 刘苹元, 王锦鸿, 等. 我国风电产业的发展现状分析及未来展望 [J]. 机电信息, 2020(21): 91-94. DOI:  10.19514/j.cnki.cn32-1628/tm.2020.21.045.

LI H Z, LIU P Y, WANG J H, et al. Analysis of the current situation and future prospects of China's wind power industry [J]. Mechanical and Electrical Information, 2020(21): 91-94. DOI:  10.19514/j.cnki.cn32-1628/tm.2020.21.045.
[6] 李桂超. 海上风电出力特性及其消纳问题探讨 [J]. 通信电源技术, 2019, 36(2): 241-242. DOI:  10.19399/j.cnki.tpt.2019.02.106.

LI G C. Discussion on the output characteristics of offshore wind power and its consumption problems [J]. Telecom Power Technology, 2019, 36(2): 241-242. DOI:  10.19399/j.cnki.tpt.2019.02.106.
[7] 廖攀峰, 齐军, 孙绥, 等. 基于改进k-means聚类的风电功率典型场景在日前调度中的应用 [J]. 电工材料, 2020(1): 46-52. DOI:  10.16786/j.cnki.1671-8887.eem.2020.01.011.

LIAO P F, QI J, SUN S, et al. Application of typical wind power scenarios based on improved k-means clustering in day-ahead dispatching [J]. Electrical Engineering Materials, 2020(1): 46-52. DOI:  10.16786/j.cnki.1671-8887.eem.2020.01.011.
[8] 熊强, 陈维荣, 张雪霞, 等. 考虑多风电场相关性的场景概率潮流计算 [J]. 电网技术, 2015, 39(8): 2154-2159. DOI:  10.13335/j.1000-3673.pst.2015.08.014.

XIONG Q, CHEN W R, ZHANG X X, et al. Scenario probabilistic load flow calculation considering wind farms correlation [J]. Power System Technology, 2015, 39(8): 2154-2159. DOI:  10.13335/j.1000-3673.pst.2015.08.014.
[9] 邱宜彬, 欧阳誉波, 李奇, 等. 考虑多风电场相关性的场景概率潮流计算及无功优化 [J]. 电力系统保护与控制, 2017, 45(2): 61-68. DOI:  10.7667/PSPC160100.

QIU Y B, OUYANG Y B, LI Q, et al. Scenario probabilistic load flow calculation and reactive power optimization considering wind farms correlation [J]. Power System Protection and Control, 2017, 45(2): 61-68. DOI:  10.7667/PSPC160100.
[10] 王群, 董文略, 杨莉. 基于Wasserstein距离和改进K-medoids聚类的风电/光伏经典场景集生成算法 [J]. 中国电机工程学报, 2015, 35(11): 2654-2661. DOI:  10.13334/j.0258-8013.pcsee.2015.11.003.

WANG Q, DONG W L, YANG L. A wind power/photovoltaic typical scenario set generation algorithm based on Wasserstein distance metric and revised K-medoids cluster [J]. Proceedings of the CSEE, 2015, 35(11): 2654-2661. DOI:  10.13334/j.0258-8013.pcsee.2015.11.003.
[11] 王洪涛, 刘旭, 陈之栩, 等. 低碳背景下基于改进通用生成函数法的随机生产模拟 [J]. 电网技术, 2013, 37(3): 597-603. DOI:  10.13335/j.1000-3673.pst.2013.03.003.

WANG H T, LIU X, CHEN Z X, et al. Power system probabilistic production simulation based on improved universal generating function methods in low-carbon context [J]. Power System Technology, 2013, 37(3): 597-603. DOI:  10.13335/j.1000-3673.pst.2013.03.003.
[12] 丁明, 解蛟龙, 刘新宇, 等. 面向风电接纳能力评价的风资源/负荷典型场景集生成方法与应用 [J]. 中国电机工程学报, 2016, 36(15): 4064-4071. DOI:  10.13334/j.0258-8013.pcsee.152854.

DING M, XIE J L, LIU X Y, et al. The generation method and application of wind resources/load typical scenario set for evaluation of wind power grid integration [J]. Proceedings of the CSEE, 2016, 36(15): 4064-4071. DOI:  10.13334/j.0258-8013.pcsee.152854.
[13] 张发才, 李喜旺, 樊国旗. 基于高斯混合聚类的风电出力场景划分 [J]. 计算机系统应用, 2021, 30(1): 146-153. DOI:  10.15888/j.cnki.csa.007737.

ZHANG F C, LI X W, FAN G Q. Wind power output scene division based on Gaussian hybrid clustering [J]. Computer Systems & Applications, 2021, 30(1): 146-153. DOI:  10.15888/j.cnki.csa.007737.
[14] 崔杨, 杨海威, 李鸿博. 基于高斯混合模型的风电场群功率波动概率密度分布函数研究 [J]. 电网技术, 2016, 40(4): 1107-1112. DOI:  10.13335/j.1000-3673.pst.2016.04.019.

CUI Y, YANG H W, LI H B. Probability density distribution function of wind power fluctuation of a wind farm group based on the Gaussian mixture model [J]. Power System Technology, 2016, 40(4): 1107-1112. DOI:  10.13335/j.1000-3673.pst.2016.04.019.
[15] LI K H, MA Z J, ROBINSON D, et al. Identification of typical building daily electricity usage profiles using Gaussian mixture model-based clustering and hierarchical clustering [J]. Applied Energy, 2018, 231: 331-342. DOI:  10.1016/j.apenergy.2018.09.050.
[16] 张美霞, 李丽, 杨秀, 等. 基于高斯混合模型聚类和多维尺度分析的负荷分类方法 [J]. 电网技术, 2020, 44(11): 4283-4293. DOI:  10.13335/j.1000-3673.pst.2019.1929.

ZHANG M X, LI L, YANG X, et al. A load classification method based on Gaussian mixture model clustering and multi-dimensional scaling analysis [J]. Power System Technology, 2020, 44(11): 4283-4293. DOI:  10.13335/j.1000-3673.pst.2019.1929.