[1] |
国家发展改革委, 国家能源局. “十四五”现代能源体系规划 [EB/OL]. (2022-03-22) [2023-01-26]. https://www.ndrc.gov.cn/xwdt/tzgg/202203/t20220322_1320017.html.
National Development and Reform Commission, National Energy Administration. "Fourteenth Five-Year Plan" modern energy system planning [EB/OL]. (2022-03-22) [2023-01-26]. https://www.ndrc.gov.cn/xwdt/tzgg/202203/t20220322_1320017.html. |
[2] |
元国凯, 方辉, 马兆荣,等. 船撞海上风电单桩基础结构剩余强度研究 [J]. 内蒙古电力技术, 2022, 40(5): 7-15. DOI: 10.19929/j.cnki.nmgdljs.2022.0074.
YUAN G K, FANG H, MA Z R, et al. Study on residual strength of offshore wind turbine monopile foundations after ship collision [J]. Inner Mongolia electric power, 2022, 40(5): 7-15. DOI: 10.19929/j.cnki.nmgdljs.2022.0074. |
[3] |
曾雨欣, 施伟, 张礼贤, 等. 10 MW大型单桩式海上风机桩土作用研究 [J]. 南方能源建设, 2023, 10(1): 1-12. DOI: 10.16516/j.gedi.issn2095-8676.2023.01.001.
ZENG Y X, SHI W, ZHANG L X, et al. Research on pile-soil interaction of 10 MW large monopile offshore wind turbine [J]. Southern energy construction, 2023, 10(1): 1-12. DOI: 10.16516/j.gedi.issn2095-8676.2023.01.001. |
[4] |
刘晋超. 海上大直径单桩基础沉桩施工关键技术研究 [J]. 南方能源建设, 2022, 9(1): 47-51. DOI: 10.16516/j.gedi.issn2095-8676.2022.01.007.
LIU J C. Research on key technologies of pile driving construction for monopile [J]. Southern energy construction, 2022, 9(1): 47-51. DOI: 10.16516/j.gedi.issn2095-8676.2022.01.007. |
[5] |
ZDRAVKOVIĆ L, TABORDA D M G, POTTS D M, et al. Numerical modelling of large diameter piles under lateral loading for offshore wind applications [C]//3rd International Symposium on Frontiers in Offshore Geotechnics, Oslo, Norway, June 10-12, 2015. Boca Raton: CRC Press, 2015: 759-764. |
[6] |
BURD H J, TABORDA D M G, ZDRAVKOVIĆ L, et al. PISA design model for monopiles for offshore wind turbines: application to a marine sand [J]. Géotechnique, 2020, 70(11): 1048-1066. DOI: 10.1680/jgeot.18.p.277. |
[7] |
BYRNE B W, HOULSBY G T, BURD H J, et al. PISA design model for monopiles for offshore wind turbines: application to a stiff glacial clay till [J]. Géotechnique, 2020, 70(11): 1030-1047. DOI: 10.1680/jgeot.18.P.255. |
[8] |
TERZAGHI K. Theoretical soil mechanics [M]. New York: John Wiley & Sons, Inc. , 1943. |
[9] |
DRUCKER D C, PRAGER W. Soil mechanics and plastic analysis or limit design [J]. Quarterly of applied mathematics, 1952, 10(2): 157-165. DOI: 10.1090/qam/48291. |
[10] |
ROSCOE K H, SCHOFIELD A N, THURAIRAJAH A. Yielding of clays in states wetter than critical [J]. Géotechnique, 1963, 13(3): 211-240. DOI: 10.1680/geot.1963.13.3.211. |
[11] |
ROSCOE K H, BURLAND J B. On the generalized stress-strain behavior of ‘wet’ clays [M]. Cambridge: Cambridge University Press, 1968. |
[12] |
LADE P V, DUNCAN J M. Elastoplastic stress-strain theory for cohesionless soil [J]. Journal of the geotechnical engineering division, 1975, 101(10): 1037-1053. DOI: 10.1061/AJGEB6.0000204. |
[13] |
DAFALIAS Y F, POPOV E P. Plastic internal variables formalism of cyclic plasticity [J]. Journal of applied mechanics, 1976, 43(4): 645-651. DOI: 10.1115/1.3423948. |
[14] |
DAFALIAS Y F. Bounding surface plasticity. I: mathematical foundation and hypoplasticity [J]. Journal of engineering mechanics, 1986, 112(9): 966-987. DOI: 10.1061/(ASCE)0733-9399(1986)112:9(966). |
[15] |
DAFALIAS Y F. Plastic spin: necessity or redundancy? [J]. International journal of plasticity, 1998, 14(9): 909-931. DOI: 10.1016/S0749-6419(98)00036-9. |
[16] |
DAFALIAS Y F, MANZARI M T, PAPADIMITRIOU A G. SANICLAY: simple anisotropic clay plasticity model [J]. International journal for numerical and analytical methods in geomechanics, 2006, 30(12): 1231-1257. DOI: 10.1002/nag.524. |
[17] |
DAFALIAS Y F, POPOV E P. A model of nonlinearly hardening materials for complex loading [J]. Acta mechanica, 1975, 21(3): 173-192. DOI: 10.1007/BF01181053. |
[18] |
DAFALIAS Y F, MANZARI M T, AKAISHI M. A simple anisotropic clay plasticity model [J]. Mechanics research communications, 2002, 29(4): 241-245. DOI: 10.1016/S0093-6413(02)00252-5. |
[19] |
HASHIGUCHI K, CHEN Z P. Elastoplastic constitutive equation of soils with the subloading surface and the rotational hardening [J]. International journal for numerical and analysis methods in geomechanics, 1998, 22(3): 197-227. DOI: 10.1002/(SICI)1096-9853(199803)22:33.0.CO;2-T. |
[20] |
HASHIGUCHI K. Generalized plastic flow rule [J]. International journal of plasticity, 2005, 21(2): 321-351. DOI: 10.1016/j.ijplas.2003.12.003. |
[21] |
HASHIGUCHI K, OZAKI S, OKAYASU T. Unconventional friction theory based on the subloading surface concept [J]. International journal of solids and structures, 2005, 42(5/6): 1705-1727. DOI: 10.1016/j.ijsolstr.2004.08.006. |
[22] |
ASAOKA A, NODA T, FERNANDO G S K. Consolidation deformation behavior of lightly and heavily overconsolidated clay foundations [J]. Soils and foundations, 1998, 38(2): 75-91. DOI: 10.3208/sandf.38.2_75. |
[23] |
ASAOKA A, NAKANO M, NODA T. Superloading yield surface concept for highly structured soil behavior [J]. Soils and foundations, 2000, 40(2): 99-110. DOI: 10.3208/sandf.40.2_99. |
[24] |
ASAOKA A, NODA T, YAMADA E, et al. An Elasto-plastic description of two distinct volume change mechanisms of soils [J]. Soils and foundations, 2002, 42(5): 47-57. DOI: 10.3208/sandf.42.5_47. |
[25] |
黄文熙. 土的弹塑性应力-应变模型理论 [J]. 岩土力学, 1979(1): 1-20. DOI: 10.16285/j.rsm.1979.01.002.
HUANG W X. Theory of elastoplastic stress-strain model for soil [J]. Rock and soil mechanics, 1979(1): 1-20. DOI: 10.16285/j.rsm.1979.01.002. |
[26] |
黄文熙. 硬化规律对土的弹塑性应力-应变模型影响的研究 [J]. 岩土工程学报, 1980, 2(1): 1-11. DOI: 10.3321/j.issn:1000-4548.1980.01.001.
HUANG W X. The influence of the hardening law on the formulation of the Elasto-plastic model of soil [J]. Chinese journal of geotechnical engineering, 1980, 2(1): 1-11. DOI: 10.3321/j.issn:1000-4548.1980.01.001. |
[27] |
黄文熙, 濮家骝, 陈愈炯. 土的硬化规律和屈服函数 [J]. 岩土工程学报, 1981, 3(3): 19-26. DOI: 10.3321/j.issn:1000-4548.1981.03.003.
HUANG W X, PU J L, CHEN Y J. Hardening rule and yield function for soils [J]. Chinese journal of geotechnical engineering, 1981, 3(3): 19-26. DOI: 10.3321/j.issn:1000-4548.1981.03.003. |
[28] |
沈珠江. 土的弹塑性应力应变关系的合理形式 [J]. 岩土工程学报, 1980, 2(2): 11-19. DOI: 10.3321/j.issn:1000-4548.1980.02.002.
SHEN Z J. The rational form of stress-strain relationship of soils based on Elasto-plasticity theory [J]. Chinese journal of geotechnical engineering, 1980, 2(2): 11-19. DOI: 10.3321/j.issn:1000-4548.1980.02.002. |
[29] |
沈珠江. 土的三重屈服面应力应变模式 [J]. 固体力学学报, 1984(2): 163-174. DOI: 10.19636/j.cnki.cjsm42-1250/o3.1984.02.002.
SHEN Z J. A stress-strain model for soils with three yield surfaces [J]. Acta mechanica solida sinica, 1984(2): 163-174. DOI: 10.19636/j.cnki.cjsm42-1250/o3.1984.02.002. |
[30] |
沈珠江. 几种屈服函数的比较 [J]. 岩土力学, 1993, 14(1): 41-50. DOI: 10.16285/j.rsm.1993.01.005.
SHEN Z J. Comparison of several yield function [J]. Rock and soil mechanics, 1993, 14(1): 41-50. DOI: 10.16285/j.rsm.1993.01.005. |
[31] |
沈珠江. 三种硬化理论的比较 [J]. 岩土力学, 1994, 15(2): 13-19. DOI: 10.16285/j.rsm.1994.02.002.
SHEN Z J. Comparison among three kinds of hardening theories [J]. Rock and soil mechanics, 1994, 15(2): 13-19. DOI: 10.16285/j.rsm.1994.02.002. |
[32] |
沈珠江. 粘土的双硬化模型 [J]. 岩土力学, 1995, 16(1): 1-8. DOI: 10.16285/j.rsm.1995.01.001.
SHEN Z J. A double hardening model for clays [J]. Rock and soil mechanics, 1995, 16(1): 1-8. DOI: 10.16285/j.rsm.1995.01.001. |
[33] |
殷宗泽, 邓肯J M. 剪胀土与非剪胀土的应力应变关系 [J]. 岩土工程学报, 1984, 6(4): 24-40. DOI: 10.3321/j.issn:1000-4548.1984.04.003.
YIN Z Z, DUNCAN J M. A stress-strain relationship for dilative and non-dilative soils [J]. Chinese journal of geotechnical engineering, 1984, 6(4): 24-40. DOI: 10.3321/j.issn:1000-4548.1984.04.003. |
[34] |
殷宗泽. 一个土体的双屈服面应力-应变模型 [J]. 岩土工程学报, 1988, 10(4): 64-71. DOI: 10.3321/j.issn:1000-4548.1988.04.007.
YIN Z Z. A double yield surface stress-strain model of soil [J]. Chinese journal of geotechnical engineering, 1988, 10(4): 64-71. DOI: 10.3321/j.issn:1000-4548.1988.04.007. |
[35] |
殷宗泽. 土体本构模型剖析 [J]. 岩土工程学报, 1996, 18(4): 95-97. DOI: 10.3321/j.issn:1000-4548.1996.04.016.
YIN Z Z. Analysis of soil constitutive model [J]. Chinese journal of geotechnical engineering, 1996, 18(4): 95-97. DOI: 10.3321/j.issn:1000-4548.1996.04.016. |
[36] |
YAO Y P, LU D C, ZHOU A N, et al. Generalized non-linear strength theory and transformed stress space [J]. Science in China series E:technological sciences, 2004, 47(6): 691-709. DOI: 10.1360/04ye0199. |
[37] |
YAO Y P, ZHOU A N, LU D C. Extended transformed stress space for geomaterials and its application [J]. Journal of engineering mechanics, 2007, 133(10): 1115-1123. DOI: 10.1061/ASCE0733-93992007133:101115. |
[38] |
侯伟. 超固结土的本构模型 [D]. 北京: 北京航空航天大学, 2007. DOI: 10.26937/d.cnki.gbhtu.2007.000001.
HOU W. A consititutive model for overconsolidated clays [D]. Beijing: Beihang University, 2007. DOI: 10.26937/d.cnki.gbhtu.2007.000001. |
[39] |
YAO Y P, SUN D A, MATSUOKA H. A unified constitutive model for both clay and sand with hardening parameter independent on stress path [J]. Computers and geotechnics, 2008, 35(2): 210-222. DOI: 10.1016/j.compgeo.2007.04.003. |
[40] |
YAO Y P, HOU W, ZHOU A N. UH model: three-dimensional unified hardening model for overconsolidated clays [J]. Géotechnique, 2009, 59(5): 451-469. DOI: 10.1680/geot.2007.00029. |
[41] |
YAO Y P, GAO Z W, ZHAO J D, et al. Modified UH model: constitutive modeling of overconsolidated clays based on a parabolic Hvorslev envelope [J]. Journal of geotechnical and geoenvironmental engineering, 2012, 138(7): 860-868. DOI: 10.1061/(ASCE)GT.1943-5606.0000649. |
[42] |
姚仰平, 罗汀, 侯伟. 土的本构关系 [M]. 北京: 人民交通出版社, 1991.
YAO Y P, LUO T, HOU W. Soil constitutive models [M]. Beijing: China Communications Press Co. , Ltd. , 1991. |
[43] |
MAYNE P W, KULHAWY F H. K-OCR relationships in soil [J]. International journal of rock mechanics and mining sciences & geomechanics abstracts, 1983, 20(1): A2. DOI: 10.1016/0148-9062(83)91623-6. |
[44] |
ANDERSEN K H. Cyclic soil parameters for offshore foundation design [C]//The 3rd McClelland Lecture-Frontiers in Offshore Geotechnics Ⅲ, London, England, May 15, 2015. London: Taylor & Francis Group, 2015: 5-82. |