[1] 李耀华, 孔力. 发展太阳能和风能发电技术 加速推进我国能源转型 [J]. 中国科学院院刊, 2019, 34(4): 426-433. DOI:  10.16418/j.issn.1000-3045.2019.04.007.

LI Y H, KONG L. Developing solar and wind power generation technology to accelerate China's energy transformation [J]. Bulletin of Chinese academy of sciences, 2019, 34(4): 426-433. DOI:  10.16418/j.issn.1000-3045.2019.04.007.
[2] 高阳. 新时期新能源风力发电相关技术分析 [J]. 华东科技, 2023(5): 104-106. DOI:  10.3969/j.issn.1006-8465.2023.05.028.

GAO Y. Related technology analysis of new energy wind power generation in the new era [J]. East China science & technology, 2023(5): 104-106. DOI:  10.3969/j.issn.1006-8465.2023.05.028.
[3] 牛自强, 尚益章. 新时期新能源风力发电相关技术分析 [J]. 科技创新与应用, 2022, 12(30): 185-188. DOI:  10.19981/j.CN23-1581/G3.2022.30.047.

NIU Z Q, SHANG Y Z. Analysis of related technologies of new energy wind power generation in the new era [J]. Technology innovation and application, 2022, 12(30): 185-188. DOI:  10.19981/j.CN23-1581/G3.2022.30.047.
[4] 马人乐, 孙永良, 黄冬平. 风力发电塔基础设计改进研究 [J]. 结构工程师, 2009, 25(5): 93-97. DOI:  10.15935/j.cnki.jggcs.2009.05.021.

MA R L, SUN Y L, HUANG D P. Optimum design research on wind turbine generator tower foundation [J]. Structural engineers, 2009, 25(5): 93-97. DOI:  10.15935/j.cnki.jggcs.2009.05.021.
[5] 曾雨欣, 施伟, 张礼贤, 等. 10 MW大型单桩式海上风机桩土作用研究 [J]. 南方能源建设, 2023, 10(1): 1-12. DOI:  10.16516/j.gedi.issn2095-8676.2023.01.001.

ZENG Y X, SHI W, ZHANG L X, et al. Research on pile-soil interaction of 10 MW large monopile offshore wind turbine [J]. Southern energy construction, 2023, 10(1): 1-12. DOI:  10.16516/j.gedi.issn2095-8676.2023.01.001.
[6] 陈勇, 张小雷, 郎泽萌. 风力发电机发展现状及进展研究 [J]. 智能城市, 2020, 6(7): 74-75. DOI:  10.19301/j.cnki.zncs.2020.07.040.

CHEN Y, ZHANG X L, LANG Z M. Research on development status and progress of wind turbines [J]. Intelligent city, 2020, 6(7): 74-75. DOI:  10.19301/j.cnki.zncs.2020.07.040.
[7] 王经亚. 陆上风电塔筒产品发展趋势探析 [J]. 中国设备工程, 2022(10): 223-226. DOI:  10.3969/j.issn.1671-0711.2022.10.081.

WANG J Y. Analysis on development trend of onshore wind power tower barrel products [J]. China plant engineering, 2022(10): 223-226. DOI:  10.3969/j.issn.1671-0711.2022.10.081.
[8] 何维令, 魏煜锋, 蒋祥增, 等. 高柔塔风电机组塔筒振动特性分析 [J]. 振动与冲击, 2023, 42(20): 172-180. DOI:  10.13465/j.cnki.jvs.2023.20.020.

HE W L, WEI Y F, JIANG X Z, et al. Analysis of vibration characteristics of high-soft tower wind turbine [J]. Journal of vibration and shock, 2023, 42(20): 172-180. DOI:  10.13465/j.cnki.jvs.2023.20.020.
[9] 李娜. 安钢风电塔筒用Q420NC钢板焊接适应性评价 [J]. 河南冶金, 2023, 31(5): 12-15, 43. DOI:  10.3969/j.issn.1006-3129.2023.05.004.

LI N. Evaluation of welding adaptability of Q420NC steel plate for wind power tower cylinder [J]. Henan metallurgy, 2023, 31(5): 12-15, 43. DOI:  10.3969/j.issn.1006-3129.2023.05.004.
[10] 张奇毅, 陈海燕, 宋延成, 等. 风电塔筒用钢板夹杂物原因分析与改进 [J]. 宽厚板, 2024, 30(1): 35-37. DOI:  10.3969/j.issn.1009-7864.2024.01.008.

ZHANG Q Y, CHEN H Y, SONG Y C, et al. Causes analysis and improvement of inclusion in steel plate for wind power tower [J]. Wide and heavy plate, 2024, 30(1): 35-37. DOI:  10.3969/j.issn.1009-7864.2024.01.008.
[11] 戴靠山, 易立达, 刘瑶, 等. 某风电塔结构基于性能的抗震分析 [J]. 结构工程师, 2015, 31(5): 96-102. DOI:  10.15935/j.cnki.jggcs.2015.05.017.

DAI K S, YI L D, LIU Y, et al. Performance-based seismic design of a wind turbine tower [J]. Structural engineers, 2015, 31(5): 96-102. DOI:  10.15935/j.cnki.jggcs.2015.05.017.
[12] 巩海伟, 袁凌, 李英昌, 等. 风电塔筒碳钢平台与铝合金平台对比分析 [J]. 机械制造, 2021, 59(5): 50-54. DOI:  10.3969/j.issn.1000-4998.2021.05.015.

GONG H W, YUAN L, LI Y C, et al. Comparative analysis of carbon steel platform and aluminum alloy platform of wind power tower [J]. Machinery, 2021, 59(5): 50-54. DOI:  10.3969/j.issn.1000-4998.2021.05.015.
[13] 李应华. 风电塔架及工作平台结构优化 [J]. 机械工程师, 2013(7): 194-195. DOI:  10.3969/j.issn.1002-2333.2013.07.108.

LI Y H. Structural optimization of wind power tower and working platform [J]. Mechanical engineer, 2013(7): 194-195. DOI:  10.3969/j.issn.1002-2333.2013.07.108.
[14] 李保洋. 某近海风电场风机基础选型设计 [J]. 南方能源建设, 2023, 10(4): 166-173. DOI:  10.16516/j.gedi.issn2095-8676.2023.04.017.

LI B Y. Selection and design of wind turbine foundation for an offshore wind farm [J]. Southern energy construction, 2023, 10(4): 166-173. DOI:  10.16516/j.gedi.issn2095-8676.2023.04.017.
[15] 陈方述, 阳雪兵, 石峰. 永磁直驱风力发电机组弯头形机舱优化分析 [J]. 南方能源建设, 2023, 10(1): 154-159. DOI:  10.16516/j.gedi.issn2095-8676.2023.01.020.

CHEN F S, YANG X B, SHI F. Optimization analysis of permanent-magnet direct-drive wind turbine elbow shape nacelle [J]. Southern energy construction, 2023, 10(1): 154-159. DOI:  10.16516/j.gedi.issn2095-8676.2023.01.020.
[16] 翟恩地, 张新刚, 李荣富. 海上风电机组塔架基础一体化设计 [J]. 南方能源建设, 2018, 5(2): 1-7. DOI:  10.16516/j.gedi.issn2095-8676.2018.02.001.

ZHAI E D, ZHANG X G, LI R F. Integrated design of offshore wind tower and foundation [J]. Southern energy construction, 2018, 5(2): 1-7. DOI:  10.16516/j.gedi.issn2095-8676.2018.02.001.
[17] 李正霞. 基于CREO的风电塔架参数化设计 [J]. 东方电气评论, 2020, 34(1): 53-55, 63. DOI:  10.13661/j.cnki.issn1001-9006.2020.01.012.

LI Z X. Parametric design of wind turbine tower based on CREO [J]. Dongfang electric review, 2020, 34(1): 53-55, 63. DOI:  10.13661/j.cnki.issn1001-9006.2020.01.012.
[18] DNV. Support structures for wind turbines: DNV-ST-0126 [S]. Oslo, Norway: DNV, 2021.
[19] VDI. Systematic calculation of highly stressed bolted joints - joints with one cylindrical bolt: VDI 2230 BLATT 1 [S]. Berlin, German: German Society for Science and Technology, 2015.