[1] 李学斌, 赵号, 陈世龙. 预制舱式磷酸铁锂电池储能电站能耗计算研究 [J]. 南方能源建设, 2023, 10(2): 71-77. DOI:  10.16516/j.gedi.issn2095-8676.2023.02.010.

LI X B, ZHAO H, CHEN S L. Research on energy consumption calculation of prefabricated cabin type lithium iron phosphate battery energy storage power station [J]. Southern energy construction, 2023, 10(2): 71-77. DOI:  10.16516/j.gedi.issn2095-8676.2023.02.010.
[2] 蔡绍宽. 新型电力系统下的储能解决方案探讨 [J]. 南方能源建设, 2022, 9(增刊1): 17-23. DOI:  10.16516/j.gedi.issn2095-8676.2022.S1.003.

CAI S K. Discussion on energy storage solutions under the new power system [J]. Southern energy construction, 2022, 9(Suppl. 1): 17-23. DOI:  10.16516/j.gedi.issn2095-8676.2022.S1.003.
[3] 黎博, 陈民铀, 钟海旺, 等. 高比例可再生能源新型电力系统长期规划综述 [J]. 中国电机工程学报, 2023, 43(2): 555-580. DOI:  10.13334/j.0258-8013.pcsee.212716.

LI B, CHEN M Y, ZHONG H W, et al. A review of long-term planning of new power systems with large share of renewable energy [J]. Proceedings of the CSEE, 2023, 43(2): 555-580. DOI:  10.13334/j.0258-8013.pcsee.212716.
[4] 许周, 孙永辉, 谢东亮, 等. 计及电/热柔性负荷的区域综合能源系统储能优化配置 [J]. 电力系统自动化, 2020, 44(2): 53-59. DOI:  10.7500/AEPS20190620005.

XU Z, SUN Y H, XIE D L, et al. Optimal configuration of energy storage for integrated region energy system considering power/thermal flexible load [J]. Automation of electric power systems, 2020, 44(2): 53-59. DOI:  10.7500/AEPS20190620005.
[5] 任大伟, 侯金鸣, 肖晋宇, 等. 能源电力清洁化转型中的储能关键技术探讨 [J]. 高电压技术, 2021, 47(8): 2751-2759. DOI:  10.13336/j.1003-6520.hve.20201056.

REN D W, HOU J M, XIAO J Y, et al. Exploration of key technologies for energy storage in the cleansing transformation of energy and power [J]. High voltage engineering, 2021, 47(8): 2751-2759. DOI:  10.13336/j.1003-6520.hve.20201056.
[6] 张东辉, 徐文辉, 门锟, 等. 储能技术应用场景和发展关键问题 [J]. 南方能源建设, 2019, 6(3): 1-5. DOI:  10.16516/j.gedi.issn2095-8676.2019.03.001.

ZHANG D H, XU W H, MEN K, et al. Application scenarios of energy storage and its key issues in development [J]. Southern energy construction, 2019, 6(3): 1-5. DOI:  10.16516/j.gedi.issn2095-8676.2019.03.001.
[7] 何勇琪, 张建成, 鲍雪娜. 并网型风光储混合发电系统中储能系统容量优化研究 [J]. 华北电力大学学报, 2012, 39(4): 1-5.

HE Y Q, ZHANG J C, BAO X N. Optimization of storage capacity in grid-connected wind/PV/storage hybrid system [J]. Journal of North China Electric Power University, 2012, 39(4): 1-5.
[8] 韩晓娟, 程成, 籍天明, 等. 计及电池使用寿命的混合储能系统容量优化模型 [J]. 中国电机工程学报, 2013, 33(34): 91-97. DOI:  10.13334/j.0258-8013.pcsee.2013.34.015.

HAN X J, CHENG C, JI T M, et al. Capacity optimal modeling of hybrid energy storage systems considering battery life [J]. Proceedings of the CSEE, 2013, 33(34): 91-97. DOI:  10.13334/j.0258-8013.pcsee.2013.34.015.
[9] 刘霞, 江全元. 风光储混合系统的协调优化控制 [J]. 电力系统自动化, 2012, 36(14): 95-100.

LIU X, JIANG Q Y. An optimal coordination control of hybrid wind/photovoitaic/energy storage system [J]. Automation of electric power systems, 2012, 36(14): 95-100.
[10] 陈银, 肖如, 崔怡琳, 等. 储能电站锂离子电池火灾早期预警与抑制技术研究综述 [J]. 电气工程学报, 2022, 17(4): 72-87. DOI:  10.11985/2022.04.009.

CHEN Y, XIAO R, CUI Y L, et al. Research review on early warning and suppression technology of lithium-ion battery fire in energy storage power station [J]. Journal of electrical engineering, 2022, 17(4): 72-87. DOI:  10.11985/2022.04.009.
[11] 陆志刚, 王科, 刘怡, 等. 深圳宝清锂电池储能电站关键技术及系统成套设计方法 [J]. 电力系统自动化, 2013, 37(1): 65-69. DOI:  10.7500/AEPS201208160.

LU Z G, WANG K, LIU Y, et al. Research and application of megawatt scale lithium-ion battery energy storage station and key technology [J]. Automation of electric power systems, 2013, 37(1): 65-69. DOI:  10.7500/AEPS201208160.
[12] 王刚. 磷酸铁锂电池储能系统的设计和研究 [D]. 徐州: 中国矿业大学, 2021.

WANG G. Design and research of energy storage system of lithium iron phosphate battery [D]. Xuzhou: China University of Mining and Technology, 2021.
[13] 王康康, 高飞, 杨凯, 等. 不同健康状态等级的储能磷酸铁锂电池熵变系数及放电产热研究 [J]. 高电压技术, 2017, 43(7): 2241-2248. DOI:  10.13336/j.1003-6520.hve.20170628020.

WANG K K, GAO F, YANG K, et al. Research of LiFePO4/C energy storage batteries' entropy coefficient and discharge heat generation based on the state of health [J]. High voltage engineering, 2017, 43(7): 2241-2248. DOI:  10.13336/j.1003-6520.hve.20170628020.
[14] 余毫. 磷酸铁锂储能电池热行为模拟分析 [D]. 北京: 华北电力大学(北京), 2022. DOI:  10.27140/d.cnki.ghbbu.2022.001436.

YU H. Thermal behavior simulation of lithium iron phosphate energy storage battery [D]. Beijing: North China Electric Power University (Beijing), 2022. DOI:  10.27140/d.cnki.ghbbu.2022.001436.
[15] 于子轩, 孟国栋, 谢小军, 等. 磷酸铁锂储能电池过充热失控仿真研究 [J]. 电气工程学报, 2022, 17(3): 30-39. DOI:  10.11985/2022.03.005.

YU Z X, MENG G D, XIE X J, et al. Simulation research on overcharge thermal runaway of lithium iron phosphate energy storage battery [J]. Journal of electrical engineering, 2022, 17(3): 30-39. DOI:  10.11985/2022.03.005.
[16] 李奎杰, 楼平, 管敏渊, 等. 锂离子电池热失控多维信号演化及耦合机制研究综述 [J]. 储能科学与技术, 2023, 12(3): 899-912. DOI:  10.19799/j.cnki.2095-4239.2022.0694.

LI K J, LOU P, GUAN M Y, et al. A review of multi-dimensional signal evolution and coupling mechanism of lithium-ion battery thermal runaway [J]. Energy storage science and technology, 2023, 12(3): 899-912. DOI:  10.19799/j.cnki.2095-4239.2022.0694.
[17] 程志翔, 曹伟, 户波, 等. 储能用大容量磷酸铁锂电池热失控行为及燃爆传播特性 [J]. 储能科学与技术, 2023, 12(3): 923-933. DOI:  10.19799/j.cnki.2095-4239.2022.0690.

CHENG Z X, CAO W, HU B, et al. Thermal runaway and explosion propagation characteristics of large lithium iron phosphate battery for energy storage station [J]. Energy storage science and technology, 2023, 12(3): 923-933. DOI:  10.19799/j.cnki.2095-4239.2022.0690.
[18] 吴静云, 黄峥, 郭鹏宇. 储能用磷酸铁锂(LFP)电池消防技术研究进展 [J]. 储能科学与技术, 2019, 8(3): 495-499. DOI:  10.12028/j.issn.2095-4239.2019.0010.

WU J Y, HUANG Z, GUO P Y. Research progress on fire protection technology of LFP lithium-ion battery used in energy storage power station [J]. Energy storage science and technology, 2019, 8(3): 495-499. DOI:  10.12028/j.issn.2095-4239.2019.0010.
[19] CIVAN L, KURAMA S. A review: preparation of functionalised materials/smart fabrics that exhibit thermochromic behaviour [J]. Materials science and technology, 2021, 37(18): 1405-1420. DOI:  10.1080/02670836.2021.2015844.
[20] LI X H, LIU C, FENG S P, et al. Broadband light management with thermochromic hydrogel microparticles for smart windows [J]. Joule, 2019, 3(1): 290-302. DOI:  10.1016/j.joule.2018.10.019.
[21] LE T K, PHAM P V, DONG C L, et al. Recent advances in vanadium pentoxide (V2O5) towards related applications in chromogenics and beyond: fundamentals, progress, and perspectives [J]. Journal of materials chemistry C, 2022, 10(11): 4019-4071. DOI:  10.1039/d1tc04872d.
[22] 李瑞珍, 赵珍, 娄鸿飞, 等. 有机热致变色材料的波长相关光老化机制研究 [J]. 化学工业与工程, 2023. DOI:  10.13353/j.issn.1004.9533.20220330.

LI R Z, ZHAO Z, LOU H F, et al. Wavelength-dependent photoaging mechanism of organic thermochromic materials [J]. Chemical industry and engineering, 2023. DOI:  10.13353/j.issn.1004.9533.20220330.
[23] ABURAS M, SOEBARTO V, WILLIAMSON T, et al. Thermochromic smart window technologies for building application: A review [J]. Applied energy, 2019, 255: 113522. DOI:  10.1016/j.apenergy.2019.113522.
[24] 籍晓倩. 光诱导热变色聚氨酯制备及性能 [D]. 无锡: 江南大学, 2020.

JI X Q. Preparation and performance of UV-induced thermochromic polyurethane [D]. Wuxi: Jiangnan University.
[25] 梁琛. 磁靶向紫外光敏微胶囊/环氧树脂复合绝缘材料的自修复特性研究 [D]. 重庆: 重庆大学, 2021.

LIANG C. Self-healing properties of magnetic targeting UV-polymerization microcapsule/epoxy resin insulation composite [D]. Chongqing: Chongqing University, 2021.
[26] SIMA W X, LI Z H, SUN P T, et al. Thermochromic insulation materials for thermal sensing and overheat prewarning [J]. IEEE transactions on dielectrics and electrical insulation, 2022, 29(5): 1727-1734. DOI:  10.1109/TDEI.2022.3195124.
[27] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 绝缘材料 电气强度试验方法 第1部分: 工频下试验: GB/T 1408.1-2016 [S]. 北京: 中国标准出版社, 2016.

General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Insulating materials-Test methods for electric strength-Part 1: Test at power frequencies: GB/T 1408.1-2016 [S]. Beijing: Standards Press of China, 2016.
[28] SUN P T, LI C, SIMA W X, et al. Super electrical insulating materials based on Honeycomb-inspired nanostructure: high electrical strength and low permittivity and dielectric loss [J]. Advanced electronic materials, 2022, 8(4): 2100979. DOI:  10.1002/aelm.202100979.
[29] SUN P T, LIU F Q, SIMA W X, et al. A novel UV, moisture and magnetic field triple-response smart insulating material achieving highly targeted self-healing based on nano-functionalized microcapsules [J]. Nanoscale, 2022, 14(6): 2199-2209. DOI:  10.1039/d1nr04600d.
[30] 梁琛, 司马文霞, 孙魄韬, 等. 单组分光敏微胶囊/纳米SiO2/环氧树脂复合绝缘介质的自修复特性 [J]. 电工技术学报, 2022, 37(6): 1564-1571.

LIANG C, SIMA W X, SUN P T, et al. Self-healing property of one-component photosensitive microcapsule/nano-SiO2/epoxy composite dielectric [J]. Transactions of china electrotechnical society, 2022, 37(6): 1564-1571.
[31] SUN P T, ZHAO M K, SIMA W X, et al. Microwave-magnetic field dual-response raspberry-like microspheres for targeted and repeated self-healing from electrical damage of insulating composites [J]. Journal of materials chemistry C, 2022, 10(28): 10262-10270. DOI:  10.1039/d2tc01693a.
[32] CHIU H T, CHIU S H, WU J H. Study on mechanical properties and intermolecular interaction of silicone rubber/polyurethane/epoxy blends [J]. Journal of applied polymer science, 2003, 89(4): 959-970. DOI:  10.1002/app.12165.
[33] PARK S J, JIN J S. Energetic studies on epoxy–polyurethane interpenetrating polymer networks [J]. Journal of applied polymer science, 2001, 82(3): 775-780. DOI:  10.1002/app.1903.
[34] LIN S P, HAN J L, YEH J T, et al. Composites of UHMWPE fiber reinforced PU/epoxy grafted interpenetrating polymer networks [J]. European polymer journal, 2007, 43(3): 996-1008. DOI:  10.1016/j.eurpolymj.2006.12.001.
[35] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 电气绝缘材料 耐热性 第1部分: 老化程序和试验结果的评定: GB/T 11026.1-2016 [S]. 北京: 中国标准出版社, 2016.

General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Electrical insulating materials-Thermal endurance properties-Part 1: Ageing procedures and evaluation of test results: GB/T 11026.1-2016 [S]. Beijing: Standards Press of China, 2016.