[1] VEERS P, DYKES K, LANTZ E, et al. Grand challenges in the science of wind energy [J]. Science, 2019, 366(6464): eaau2027. DOI:  10.1126/science.aau2027.
[2] DETHLEFF D, WEINRICH N, KOWALD B, et al. Air medical evacuations from the German North Sea wind farm bard offshore 1: traumatic injuries, acute diseases, and rescue process times (2011-2013) [J]. Air medical journal, 2016, 35(4): 216-226. DOI:  10.1016/j.amj.2016.02.002.
[3] FRANDSEN S, BARTHELMIE R, PRYOR S, et al. Analytical modelling of wind speed deficit in large offshore wind farms [J]. Wind energy, 2006, 9(1/2): 39-53. DOI:  10.1002/we.189.
[4] ARCHER C L, VASEL-BE-HAGH A, YAN C, et al. Review and evaluation of wake loss models for wind energy applications [J]. Applied energy, 2018, 226: 1187-1207. DOI:  10.1016/j.apenergy.2018.05.085.
[5] LUBITZ W D. Impact of ambient turbulence on performance of a small wind turbine [J]. Renewable energy, 2014, 61(3): 69-73. DOI:  10.1016/j.renene.2012.08.015.
[6] PORTÉ-AGEL F, WU Y T, LU H, et al. Large-eddy simulation of atmospheric boundary layer flow through wind turbines and wind farms [J]. Journal of wind engineering and industrial aerodynamics, 2011, 99(4): 154-168. DOI:  10.1016/j.jweia.2011.01.011.
[7] BARTHELMIE R J, RATHMANN O, FRANDSEN S T, et al. Modelling and measurements of wakes in large wind farms [J]. Journal of physics: conference series, 2007, 75(1): 012049. DOI:  10.1088/1742-6596/75/1/012049.
[8] CARCANGIU C E. CFD-RANS study of horizontal axis wind turbines [D]. Cagliari: Università degli Studi di Cagliari, 2008.
[9] 陈默, 张璇, 郑文涛, 等. 风电场尾流干涉效应及布局优化研究 [J]. 科学技术与工程, 2023, 23(36): 15491-15497. DOI:  10.3969/j.issn.1671-1815.2023.36.018.

CHEN M, ZHANG X, ZHENG W T, et al. Wake interference effect and layout optimization of wind farm [J]. Science technology and engineering, 2023, 23(36): 15491-15497. DOI:  10.3969/j.issn.1671-1815.2023.36.018.
[10] 张周周, 陈建, 徐洪涛, 等. 升力型垂直轴风力机相互作用研究 [J]. 中国机械工程, 2017, 28(21): 2577-2581, 2587. DOI:  10.3969/j.issn.1004-132X.2017.21.011.

ZHANG Z Z, CHEN J, XU H T, et al. Investigation of interaction between lift-type VAWTs [J]. China mechanical engineering, 2017, 28(21): 2577-2581, 2587. DOI:  10.3969/j.issn.1004-132X.2017.21.011.
[11] 李少华, 岳巍澎, 匡青峰, 等. 双机组风力机尾流互扰及阵列的数值模拟 [J]. 中国电机工程学报, 2011, 31(5): 101-107. DOI:  10.13334/j.0258-8013.pcsee.2011.05.019.

LI S H, YUE W P, KUANG Q F, et al. Numerical simulation of wake interaction and array of double wind turbine [J]. Proceedings of the CSEE, 2011, 31(5): 101-107. DOI:  10.13334/j.0258-8013.pcsee.2011.05.019.
[12] 田琳琳, 赵宁, 钟伟. 风力机尾流相互干扰的数值模拟 [J]. 太阳能学报, 2012, 33(8): 1315-1320. DOI:  10.19912/j.0254-0096.2012.08.011.

TIAN L L, ZHAO N, ZHONG W. Numerical simulation of wake interactions of wind turbines [J]. Acta energiae solaris sinica, 2012, 33(8): 1315-1320. DOI:  10.19912/j.0254-0096.2012.08.011.
[13] 郭静婷. 风电场中风力机间相互影响的研究 [D]. 呼和浩特: 内蒙古工业大学, 2010.

GUO J T. Research on optimization collocation in wind farm [D]. Hohhot: Inner Mongolia University of Technology, 2010.
[14] 蔡新, 潘盼, 朱杰, 等. 基于CFD技术的垂直轴风力机动态尾流特性研究 [J]. 计算力学学报, 2014, 31(5): 675-680. DOI:  10.7511/jslx201405022.

CAI X, PAN P, ZHU J, et al. Analysis of vertical axis wind turbine dynamic wake with CFD technology [J]. Chinese journal of computational mechanics, 2014, 31(5): 675-680. DOI:  10.7511/jslx201405022.
[15] WU Y T, LIAO T L, CHEN C K, et al. Power output efficiency in large wind farms with different hub heights and configurations [J]. Renewable energy, 2019, 132: 941-949. DOI:  10.1016/j.renene.2018.08.051.
[16] ZHAO C Y, ZHANG Z J. Digital filter design and performance analysis of dynamic temperature signal denoise based on FPGA [C]//Proceedings of the 10th International Conference on Sensing Technology, Nanjing, China, November 11-13, 2016. Nanjing: IEEE, 2016: 71-74. DOI:  10.1109/ICSensT.2016.7796285.
[17] 张思瑶, 赵超, 隋东, 等. 风电场流场特性及风机布局数值模拟研究 [J]. 气象与环境学报, 2021, 37(2): 101-106. DOI:  10.3969/j.issn.1673-503X.2021.02.014.

ZHANG S Y, ZHAO C, SUI D, et al. Research on numerical simulation of wind farm flow field characteristics and fan layout [J]. Journal of meteorology and environment, 2021, 37(2): 101-106. DOI:  10.3969/j.issn.1673-503X.2021.02.014.
[18] MOSETTI G, POLONI C, DIVIACCO B. Optimization of wind turbine positioning in large windfarms by means of a genetic algorithm [J]. Journal of wind engineering and industrial aerodynamics, 1994, 51(1): 105-116. DOI:  10.1016/0167-6105(94)90080-9.
[19] GRADY S A, HUSSAINI M Y, ABDULLAH M M. Placement of wind turbines using genetic algorithms [J]. Renewable energy, 2005, 30(2): 259-270. DOI:  10.1016/j.renene.2004.05.007.
[20] 徐佳楠, 张天瑞, 李玉龙. 基于自适应遗传-粒子群优化算法的风电场微观选址优化 [J]. 科学技术与工程, 2023, 23(16): 6917-6922. DOI:  10.3969/j.issn.1671-1815.2023.16.023.

XU J N, ZHANG T R, LI Y L. Micro-location and optimization of wind farm based on the adaptive GA-PSO algorithm [J]. Science technology and engineering, 2023, 23(16): 6917-6922. DOI:  10.3969/j.issn.1671-1815.2023.16.023.
[21] SHALER K, JONKMAN J, HAMILTON N. Effects of inflow spatiotemporal discretization on wake meandering and turbine structural response using FAST. Farm [J]. Journal of physics: conference series, 2019, 1256: 012023. DOI:  10.1088/1742-6596/1256/1/012023.
[22] 崔家平. 考虑尾流效应的漂浮式风电场出力控制策略研究 [D]. 沈阳: 沈阳工业大学, 2022. DOI:  10.27322/d.cnki.gsgyu.2022.000059.

CUI J P. Research on power output control strategy of floating wind farm considering wake effect [D]. Shenyang: Shenyang University of Technology, 2022. DOI:  10.27322/d.cnki.gsgyu.2022.000059.
[23] GAUMOND M, RÉTHORÉ P E, OTT S, et al. Evaluation of the wind direction uncertainty and its impact on wake modeling at the horns rev offshore wind farm [J]. Wind energy, 2014, 17(8): 1169-1178. DOI:  10.1002/we.1625.
[24] 吴俊. 海上浮式风力机气动性能的数值模拟 [D]上海: 上海交通大学, 2016. DOI:  10.27307/d.cnki.gsjtu.2016.000283.

WU J. Numerical analysis of aerodynamic performance of floating offshore wind turbine [D]. Shanghai: Shanghai Jiao Tong University, 2016. DOI:  10.27307/d.cnki.gsjtu.2016.000283.
[25] 刘强, 杨科, 黄宸武, 等. 5 MW大型风力机气动特性计算及分析 [J]. 工程热物理学报, 2012, 33(7): 1155-1159.

LIU Q, YNGA K, HUNAG C W, et al. Simulation and analysis of the aerodynamic characteristics of a 5 MW wind turbine [J]. Journal of engineering thermophysics, 2012, 33(7): 1155-1159.
[26] 艾勇. 基于致动线模型的风电场复杂尾流特性研究 [D]. 上海: 上海交通大学, 2018. DOI:  10.27307/d.cnki.gsjtu.2018.000067.

AI Y. Numerical simulation of complex wake flows for wind farm based on actuator line model [D]. Shanghai: Shanghai Jiao Tong University, 2018. DOI:  10.27307/d.cnki.gsjtu.2018.000067.
[27] CHOWDHURY S, ZHANG J, MESSAC A, et al. Unrestricted wind farm layout optimization (UWFLO): investigating key factors influencing the maximum power generation [J]. Renewable energy, 2012, 38(1): 16-30. DOI:  10.1016/j.renene.2011.06.033.
[28] 胡丹梅, 郑筱凯, 张建平. 风力机不同排列方式下尾迹数值模拟 [J]. 可再生能源, 2015, 33(5): 684-692. DOI:  10.13941/j.cnki.21-1469/tk.2015.05.007.

HU D M, ZHENG X K, ZHANG J P. Wake numerical simulation of wind turbine in different arrangement [J]. Renewable energy resources, 2015, 33(5): 684-692. DOI:  10.13941/j.cnki.21-1469/tk.2015.05.007.