[1] 韦媚媚, 项定先. 储能技术应用与发展趋势 [J]. 工业安全与环保, 2023, 49(增刊1): 4-12. DOI:  10.3969/j.issn.1001-425X.2023.z1.002.

WEI M M, XIANG D X. Application and development trend of energy storage [J]. Industrial safety and environmental protection, 2023, 49(Suppl.1): 4-12. DOI:  10.3969/j.issn.1001-425X.2023.z1.002.
[2] 杨闯, 朱曙荣, 边技超, 等. 新型物理储能技术路线分析 [J]. 电站辅机, 2023, 44(2): 10-15. DOI:  10.3969/j.issn.1672-0210.2023.02.004.

YANG C, ZHU S R, BIAN J C, et al. Analysis for new physical energy storage technology route [J]. Power station auxiliary equipment, 2023, 44(2): 10-15. DOI:  10.3969/j.issn.1672-0210.2023.02.004.
[3] 王玉晴, 高志刚. 十大新型储能技术入选 近30家上市公司入局 [N]. 上海证券报, 2024-01-26(005). DOI:  10.28719/n.cnki.nshzj.2024.000397.

WANG Y Q, GAO Z G. Ten new energy storage technologies were selected by nearly 30 listed companies [N]. Shanghai Securities, 2024-01-26(005). DOI:  10.28719/n.cnki.nshzj.2024.000397.
[4] 郑冬冬, 戴彦德. 重力储能技术与我国发展新型储能的若干思考 [J]. 经济导刊, 2023(7): 75-81.

ZHENG D D, DAI Y D. The gravity energy storage technology and the development of new energy storage in China [J]. Economic herald, 2023(7): 75-81.
[5] 胡乐松. 高效重力储能系统控制与调度优化方法研究 [D]. 济南: 山东大学, 2023.

HU L S. Research on control and scheduling optimization method of high-efficiency gravity energy storage system [D]. Ji'nan: Shandong University, 2023.
[6] 赫文豪, 李懂文, 杨东杰, 等. 新型重力储能技术研究现状与发展趋势 [J]. 大学物理实验, 2022, 35(5): 1-7. DOI:  10.14139/j.cnki.cn22-1228.2022.05.001.

HE W H, LI D W, YANG D J, et al. Research and development of novel gravity energy storage technologies [J]. Physical experiment of college, 2022, 35(5): 1-7. DOI:  10.14139/j.cnki.cn22-1228.2022.05.001.
[7] MOORE S K. The ups and downs of gravity energy storage: startups are pioneering a radical new alternative to batteries for grid storage [J]. IEEE spectrum, 2021, 58(1): 38-39. DOI:  10.1109/MSPEC.2021.9311456.
[8] 王玉莹, 杨晓斌, 陈君青, 等. 新型重力储能的原理效率及其选材选址分析 [J]. 工程研究-跨学科视野中的工程, 2023, 15(3): 193-203. DOI:  10.3724/j.issn.1674-4969.23060601.

WANG Y Y, YANG X B, CHEN J Q, et al. The principle efficiency of the new gravity energy storage and its site selection analysis [J]. Journal of engineering studies, 2023, 15(3): 193-203. DOI:  10.3724/j.issn.1674-4969.23060601.
[9] DOVGALYUK O, YAKOVENKO I, BONDARENKO R. Prospects for gravity energy storage systems in Ukrainian electric power networks [C]//Proceedings of the 2021 IEEE 2nd KhPI Week on Advanced Technology. Kharkiv: IEEE, 2021: 622-627. DOI:  10.1109/KhPIWeek53812.2021.9569966.
[10] 邱清泉, 罗晓悦, 林玉鑫, 等. 垂直式重力储能系统的研究进展和关键技术 [J]. 储能科学与技术, 2024, 13(3): 934-945. DOI:  10.19799/j.cnki.2095-4239.2023.0789.

QIU Q Q, LUO X Y, LIN Y X, et al. Research progress and key technologies in vertical gravity energy storage systems [J]. Energy storage science and technology, 2024, 13(3): 934-945. DOI:  10.19799/j.cnki.2095-4239.2023.0789.
[11] 刘晓辉, 袁康, 白亚奎, 等. 框架式重力储能系统经济性分析 [J]. 分布式能源, 2023, 8(3): 47-53. DOI:  10.16513/j.2096-2185.DE.2308307.

LIU X H, YUAN K, BAI Y K, et al. Economic analysis of frame gravity energy storage system [J]. Distributed energy, 2023, 8(3): 47-53. DOI:  10.16513/j.2096-2185.DE.2308307.
[12] 王柄根. 中国天楹:推进首个重力储能项目建设 [J].股市动态分析, 2023, (16):35.

WANG B G. China Tianying: promoting the construction of the first gravity energy storage project [J]. Stock market trend analysis weekly, 2023, (15):35
[13] 郑开云, 梁宏, 蒋励. 一种重力储能系统及其使用方法: CN111692055A [P]. 2020-09-22.

ZHENG K Y, LIANG H, JIANG L. Gravity energy storage system and application method thereof: CN111692055A [P]. 2020-09-22.
[14] 钟晓晖, 孙香宇, 荣晓敏, 等. 一种框架式重力储能系统及其控制方法: CN114977231A [P]. 2022-08-30.

ZHONG X H, SUN X Y, RONG X M, et al. Frame type gravity energy storage system and control method thereof: CN114977231A [P]. 2022-08-30.
[15] HUNT J D, ZAKERI B, FALCHETTA G, et al. Mountain gravity energy storage: a new solution for closing the gap between existing short- and long-term storage technologies [J]. Energy, 2020, 190: 116419. DOI:  10.1016/j.energy.2019.116419.
[16] 张京业, 林玉鑫, 邱清泉, 等. 基于斜坡和山体的重力储能技术研究进展 [J]. 储能科学与技术, 2024, 13(3): 924-933. DOI:  10.19799/j.cnki.2095-4239.2023.0667.

ZHANG J Y, LIN Y X, QIU Q Q, et al. Gravity energy storage technology based on slopes and mountains [J]. Energy storage science and technology, 2024, 13(3): 924-933. DOI:  10.19799/j.cnki.2095-4239.2023.0667.
[17] CAVA F, KELLY J, PEITZKE W, et al. Advanced rail energy storage: green energy storage for green energy [M]//LETCHER T M. Storing Energy. Amsterdam: Elsevier, 2016: 69-86. DOI:  10.1016/B978-0-12-803440-8.00004-X.
[18] 彭晔. 轨道交通新能源开发利用潜力研究 [J]. 现代工业经济和信息化, 2022, 12(7): 20-22. DOI:  10.16525/j.cnki.14-1362/n.2022.07.006.

PENG Y. Research on the development and utilization potential of new energy in rail transit [J]. Modern industrial economy and informationization, 2022, 12(7): 20-22. DOI:  10.16525/j.cnki.14-1362/n.2022.07.006.
[19] BOTTENFIELD G, HATIPOGLU K, PANTA Y. Advanced rail energy and storage: analysis of potential implementations for the state of West Virginia [C]//Proceedings of 2018 North American Power Symposium. Fargo: IEEE, 2018: 1-4. DOI:  10.1109/NAPS.2018.8600665.
[20] 秦婷婷, 周学志, 郭丁彰, 等. 铁轨重力储能系统效率影响因素研究 [J]. 储能科学与技术, 2023, 12(3): 835-845. DOI:  10.19799/j.cnki.2095-4239.2022.0634.

QIN T T, ZHOU X Z, GUO D Z, et al. Study on factors influencing rail gravity energy storage system efficiency [J]. Energy storage science and technology, 2023, 12(3): 835-845. DOI:  10.19799/j.cnki.2095-4239.2022.0634.
[21] 刘延龙, 陈晓光, 徐明宇, 等. 一种基于能量转换的山体重力储能系统斜坡运行控制方法: CN115653856A [P]. 2023-01-31.

LIU Y L, CHEN X G, XU M Y, et al. Mountain gravity energy storage system slope operation control method based on energy conversion: CN115653856A [P]. 2023-01-31.
[22] 宋智, 王文龙, 胡远婷, 等. 一种基于光伏-山体重力储能联合发电系统的调度方法及电网分区配置方法: CN115940220A [P]. 2023-04-07.

SONG Z, WANG W L, HU Y T, et al. Scheduling method and power grid partition configuration method based on photovoltaic-mountain gravity energy storage combined power generation system: CN115940220A [P]. 2023-04-07.
[23] 罗振军, 黄田, 梅江平, 等. 依托山体的重力储能系统: CN103867408A [P]. 2014-06-18.

LUO Z J, HUANG T, MEI J P, et al. Gravity energy storing system relying on massif: CN103867408A [P]. 2014-06-18.
[24] 肖立业, 史黎明, 韦统振, 等. 铁路轨道运载车辆储能系统: CN108437808A [P]. 2018-08-24.

XIAO L Y, SHI L M, WEI T Z, et al. Railway track carrier vehicle energy storage system: CN108437808A [P]. 2018-08-24.
[25] 聂亚惠, 周学志, 郭丁彰, 等. 铁轨重力储能系统关键影响因素及其与风电场的耦合研究 [J]. 储能科学与技术, 2024, 13(6): 1900-1910. DOI:  10.19799/j.cnki.2095-4239.2023.0962.

NIE Y H, ZHOU X Z, GUO D Z, et al. Study on key influencing factors of the rail gravity energy storage system and its coupling with wind farms [J]. Energy storage science and technology, 2024, 13(6): 1900-1910. DOI:  10.19799/j.cnki.2095-4239.2023.0962.
[26] 张陵, 南东亮, 赵启, 等. 基于重力储能的混合储能系统容量优化配置 [J]. 计算机仿真, 2024, 41(1): 103-110. DOI:  10.3969/j.issn.1006-9348.2024.01.021.

ZHANG L, NAN D L, ZHAO Q, et al. Optimal configuration of hybrid energy storage system capacity based on gravity energy storage battery [J]. Computer simulation, 2024, 41(1): 103-110. DOI:  10.3969/j.issn.1006-9348.2024.01.021.
[27] 向开端, 王辉, 彭婷婷, 等. 含混合储能的风光储系统容量优化配置 [J]. 科学技术与工程, 2023, 23(31): 13415-13422. DOI:  10.3969/j.issn.1671-1815.2023.31.025.

XIANG K D, WANG H, PENG T T, et al. Optimal capacity allocation of wind-solar-storage system with hybrid energy storage [J]. Science technology and engineering, 2023, 23(31): 13415-13422. DOI:  10.3969/j.issn.1671-1815.2023.31.025.
[28] 曾蓉. 山体储能技术及其与风电场联合出力的容量配置研究 [D]. 长沙: 长沙理工大学, 2016.

ZENG R. Research on mountain energy technology and its capacity configuration with wind farm [D]. Changsha: Changsha University of Science & Technology, 2016.
[29] 刘志刚, 伍也凡, 肖振锋, 等. 基于重力储能的风光储系统多目标容量优化规划 [J]. 全球能源互联网, 2021, 4(5): 464-475. DOI:  10.19705/j.cnki.issn2096-5125.2021.05.006.

LIU Z G, WU Y F, XIAO Z F, et al. Multi-objective optimal capacity planning of the wind-photovoltaic-storage system based on gravity energy storage [J]. Journal of global energy interconnection, 2021, 4(5): 464-475. DOI:  10.19705/j.cnki.issn2096-5125.2021.05.006.
[30] 侯慧, 徐焘, 肖振锋, 等. 基于重力储能的风光储联合发电系统容量规划与评价 [J]. 电力系统保护与控制, 2021, 49(17): 74-84. DOI:  10.19783/j.cnki.pspc.201449.

HOU H, XU T, XIAO Z F, et al. Optimal capacity planning and evaluation of a wind-photovoltaic-storage hybrid power system based on gravity energy storage [J]. Power system protection and control, 2021, 49(17): 74-84. DOI:  10.19783/j.cnki.pspc.201449.
[31] 王粟, 肖立业, 唐文冰, 等. 新型重力储能研究综述 [J]. 储能科学与技术, 2022, 11(5): 1575-1582. DOI:  10.19799/j.cnki.2095-4239.2021.0590.

WANG S, XIAO L Y, TANG W B, et al. Review of new gravity energy storage [J]. Energy storage science and technology, 2022, 11(5): 1575-1582. DOI:  10.19799/j.cnki.2095-4239.2021.0590.
[32] 郭高朋, 查鲲鹏, 周亮, 等. 一种基于传送链的高效重力储能系统: CN112096580A [P]. 2020-12-18.

GUO G P, CHA K P, ZHOU L, et al. Efficient gravity energy storage system based on conveying chain: CN112096580A [P]. 2020-12-18.
[33] 陈巨龙, 汪玉翔, 牟雪鹏, 等. 一种重力储能系统传送带式动能回收与机械冲击缓冲方法: CN116517798A [P]. 2023-08-01.

CHEN J L, WANG Y X, MOU X P, et al. Conveyor belt type kinetic energy recovery and mechanical shock buffering method for gravity energy storage system: CN116517798A [P]. 2023-08-01.
[34] MOAZZAMI M, MORADI J, SHAHINZADEH H, et al. Optimal economic operation of microgrids integrating wind farms and advanced rail energy storage system [J]. International journal of renewable energy research, 2018, 8(2): 1155-1164. DOI:  10.20508/ijrer.v8i2.7056.g7401.