[1] |
HE P W, KHALIGH A. Comprehensive analyses and comparison of 1 kW isolated DC–DC converters for bidirectional EV charging systems [J]. IEEE transactions on transportation electrification, 2017, 3(1): 147-156. DOI: 10.1109/TTE.2016.2630927. |
[2] |
DU W J, FU Q, WANG H F. Small-signal stability of a DC network planned for electric vehicle charging [J]. IEEE transactions on smart grid, 2020, 11(5): 3748-3762. DOI: 10.1109/TSG.2020.2982431. |
[3] |
REHMAN W U, KIMBALL J W, BO R. Multi-layered energy management framework for extreme fast charging stations considering demand charges, battery degradation, and forecast uncertainties [J]. IEEE transactions on transportation electrification, 2023. DOI: 10.1109/TTE.2023.3275110. |
[4] |
FU Q, DU W J, WANG H F. Planning of the DC system considering restrictions on the small-signal stability of EV charging stations and comparison between series and parallel connections [J]. IEEE transactions on vehicular technology, 2020, 69(10): 10724-10735. DOI: 10.1109/TVT.2020.3006480. |
[5] |
LIU Z J, SU M, SUN Y, et al. Existence and stability of equilibrium of DC microgrid with constant power loads [J]. IEEE transactions on power systems, 2018, 33(6): 6999-7010. DOI: 10.1109/TPWRS.2018.2849974. |
[6] |
LIN G, LIU J Y, REHTANZ C, et al. Inertia droop control and stability mechanism analysis of energy storage systems for DC-Busbar electric vehicle charging station [J]. IEEE transactions on transportation electrification, 2023, 9(1): 266-282. DOI: 10.1109/TTE.2022.3192921. |
[7] |
LIN G, MA J J, LI Y, et al. A virtual inertia and damping control to suppress voltage oscillation in islanded DC microgrid [J]. IEEE transactions on energy conversion, 2021, 36(3): 1711-1721. DOI: 10.1109/TEC.2020.3039364. |
[8] |
LONG B, ZENG W, RODRÍGUEZ J, et al. Stability enhancement of battery-testing DC microgrid: an ADRC-based virtual inertia control approach [J]. IEEE transactions on smart grid, 2022, 13(6): 4256-4268. DOI: 10.1109/TSG.2022.3184985. |
[9] |
YANG H Q, LI T S, LONG Y, et al. Distributed virtual inertia implementation of multiple electric springs based on model predictive control in DC microgrids [J]. IEEE transactions on industrial electronics, 2022, 69(12): 13439-13450. DOI: 10.1109/TIE.2021.3130332. |
[10] |
LIN G, LIU J Y, WANG P C, et al. Low-frequency oscillation analysis of virtual-inertia-controlled DC microgrids based on multi-timescale impedance model [J]. IEEE transactions on sustainable energy, 2022, 13(3): 1536-1552. DOI: 10.1109/TSTE.2022.3157473. |
[11] |
LONG B, ZENG W, RODRÍGUEZ J, et al. Enhancement of Voltage Regulation capability for DC-microgrid composed by battery test system: a fractional-order virtual inertia method [J]. IEEE transactions on power electronics, 2022, 37(10): 12538-12551. DOI: 10.1109/TPEL.2022.3171556. |
[12] |
WANG J, HUANG W T, TAI N L, et al. A bidirectional virtual inertia control strategy for the interconnected converter of standalone AC/DC hybrid microgrids [J]. IEEE transactions on power systems, 2023. DOI: 10.1109/TPWRS.2023.3246522. |
[13] |
LIN G, LIU J Y, REHTANZ C, et al. A comprehensive stability assessment system for EV DC charging station based on multi-timescale impedance model [J]. IEEE transactions on transportation electrification, 2023. DOI: 10.1109/TTE.2023.3262629. |
[14] |
GUO J, CHEN Y D, LIAO S H, et al. Analysis and mitigation of low-frequency interactions between the source and load virtual synchronous machine in an islanded microgrid [J]. IEEE transactions on industrial electronics, 2022, 69(4): 3732-3742. DOI: 10.1109/TIE.2021.3075847. |
[15] |
LENG M R, ZHOU G H, LI H Z, et al. Impedance-based stability evaluation for multibus DC microgrid without constraints on subsystems [J]. IEEE transactions on power electronics, 2022, 37(1): 932-943. DOI: 10.1109/TPEL.2021.3093372. |
[16] |
PARK D, ZADEH M. Dynamic modeling and stability analysis of marine hybrid power systems with DC grid: a model-based design approach [J]. IEEE transactions on transportation electrification, 2023. DOI: 10.1109/TTE.2023.3296099. |
[17] |
SAHOO S, MISHRA S, JHA S, et al. A cooperative adaptive droop based energy management and optimal voltage regulation scheme for DC microgrids [J]. IEEE transactions on industrial electronics, 2020, 67(4): 2894-2904. DOI: 10.1109/TIE.2019.2910037. |
[18] |
KO B S, LEE G Y, CHOI K Y, et al. A coordinated droop control method using a virtual voltage axis for power management and voltage restoration of DC microgrids [J]. IEEE transactions on industrial electronics, 2019, 66(11): 9076-9085. DOI: 10.1109/TIE.2018.2877135. |
[19] |
XIAO J F, WANG P, SETYAWAN L. Multilevel energy management system for hybridization of energy storages in DC microgrids [J]. IEEE transactions on smart grid, 2016, 7(2): 847-856. DOI: 10.1109/TSG.2015.2424983. |
[20] |
KIM S H, BYUN H J, JEONG W S, et al. Hierarchical control with voltage balancing and energy management for bipolar DC microgrid [J]. IEEE transactions on industrial electronics, 2023, 70(9): 9147-9157. DOI: 10.1109/TIE.2022.3210517. |
[21] |
ZHU X R, MENG F Q, XIE Z Y, et al. An inertia and damping control method of DC–DC converter in DC microgrids [J]. IEEE transactions on energy conversion, 2020, 35(2): 799-807. DOI: 10.1109/TEC.2019.2952717. |
[22] |
ZHI N, DING K, DU L, et al. An SOC-based virtual DC machine control for distributed storage systems in DC microgrids [J]. IEEE transactions on energy conversion, 2020, 35(3): 1411-1420. DOI: 10.1109/TEC.2020.2975033. |
[23] |
JIANG Y J, YANG Y, TAN S C, et al. Distribution power loss mitigation of parallel-connected distributed energy resources in low-voltage DC microgrids using a Lagrange multiplier-based adaptive droop control [J]. IEEE transactions on power electronics, 2021, 36(8): 9105-9118. DOI: 10.1109/TPEL.2021.3050506. |