[1] HE P W, KHALIGH A. Comprehensive analyses and comparison of 1 kW isolated DC–DC converters for bidirectional EV charging systems [J]. IEEE transactions on transportation electrification, 2017, 3(1): 147-156. DOI:  10.1109/TTE.2016.2630927.
[2] DU W J, FU Q, WANG H F. Small-signal stability of a DC network planned for electric vehicle charging [J]. IEEE transactions on smart grid, 2020, 11(5): 3748-3762. DOI:  10.1109/TSG.2020.2982431.
[3] REHMAN W U, KIMBALL J W, BO R. Multi-layered energy management framework for extreme fast charging stations considering demand charges, battery degradation, and forecast uncertainties [J]. IEEE transactions on transportation electrification, 2023. DOI: 10.1109/TTE.2023.3275110.
[4] FU Q, DU W J, WANG H F. Planning of the DC system considering restrictions on the small-signal stability of EV charging stations and comparison between series and parallel connections [J]. IEEE transactions on vehicular technology, 2020, 69(10): 10724-10735. DOI:  10.1109/TVT.2020.3006480.
[5] LIU Z J, SU M, SUN Y, et al. Existence and stability of equilibrium of DC microgrid with constant power loads [J]. IEEE transactions on power systems, 2018, 33(6): 6999-7010. DOI:  10.1109/TPWRS.2018.2849974.
[6] LIN G, LIU J Y, REHTANZ C, et al. Inertia droop control and stability mechanism analysis of energy storage systems for DC-Busbar electric vehicle charging station [J]. IEEE transactions on transportation electrification, 2023, 9(1): 266-282. DOI:  10.1109/TTE.2022.3192921.
[7] LIN G, MA J J, LI Y, et al. A virtual inertia and damping control to suppress voltage oscillation in islanded DC microgrid [J]. IEEE transactions on energy conversion, 2021, 36(3): 1711-1721. DOI:  10.1109/TEC.2020.3039364.
[8] LONG B, ZENG W, RODRÍGUEZ J, et al. Stability enhancement of battery-testing DC microgrid: an ADRC-based virtual inertia control approach [J]. IEEE transactions on smart grid, 2022, 13(6): 4256-4268. DOI:  10.1109/TSG.2022.3184985.
[9] YANG H Q, LI T S, LONG Y, et al. Distributed virtual inertia implementation of multiple electric springs based on model predictive control in DC microgrids [J]. IEEE transactions on industrial electronics, 2022, 69(12): 13439-13450. DOI:  10.1109/TIE.2021.3130332.
[10] LIN G, LIU J Y, WANG P C, et al. Low-frequency oscillation analysis of virtual-inertia-controlled DC microgrids based on multi-timescale impedance model [J]. IEEE transactions on sustainable energy, 2022, 13(3): 1536-1552. DOI:  10.1109/TSTE.2022.3157473.
[11] LONG B, ZENG W, RODRÍGUEZ J, et al. Enhancement of Voltage Regulation capability for DC-microgrid composed by battery test system: a fractional-order virtual inertia method [J]. IEEE transactions on power electronics, 2022, 37(10): 12538-12551. DOI:  10.1109/TPEL.2022.3171556.
[12] WANG J, HUANG W T, TAI N L, et al. A bidirectional virtual inertia control strategy for the interconnected converter of standalone AC/DC hybrid microgrids [J]. IEEE transactions on power systems, 2023. DOI: 10.1109/TPWRS.2023.3246522.
[13] LIN G, LIU J Y, REHTANZ C, et al. A comprehensive stability assessment system for EV DC charging station based on multi-timescale impedance model [J]. IEEE transactions on transportation electrification, 2023. DOI: 10.1109/TTE.2023.3262629.
[14] GUO J, CHEN Y D, LIAO S H, et al. Analysis and mitigation of low-frequency interactions between the source and load virtual synchronous machine in an islanded microgrid [J]. IEEE transactions on industrial electronics, 2022, 69(4): 3732-3742. DOI:  10.1109/TIE.2021.3075847.
[15] LENG M R, ZHOU G H, LI H Z, et al. Impedance-based stability evaluation for multibus DC microgrid without constraints on subsystems [J]. IEEE transactions on power electronics, 2022, 37(1): 932-943. DOI:  10.1109/TPEL.2021.3093372.
[16] PARK D, ZADEH M. Dynamic modeling and stability analysis of marine hybrid power systems with DC grid: a model-based design approach [J]. IEEE transactions on transportation electrification, 2023. DOI: 10.1109/TTE.2023.3296099.
[17] SAHOO S, MISHRA S, JHA S, et al. A cooperative adaptive droop based energy management and optimal voltage regulation scheme for DC microgrids [J]. IEEE transactions on industrial electronics, 2020, 67(4): 2894-2904. DOI:  10.1109/TIE.2019.2910037.
[18] KO B S, LEE G Y, CHOI K Y, et al. A coordinated droop control method using a virtual voltage axis for power management and voltage restoration of DC microgrids [J]. IEEE transactions on industrial electronics, 2019, 66(11): 9076-9085. DOI:  10.1109/TIE.2018.2877135.
[19] XIAO J F, WANG P, SETYAWAN L. Multilevel energy management system for hybridization of energy storages in DC microgrids [J]. IEEE transactions on smart grid, 2016, 7(2): 847-856. DOI:  10.1109/TSG.2015.2424983.
[20] KIM S H, BYUN H J, JEONG W S, et al. Hierarchical control with voltage balancing and energy management for bipolar DC microgrid [J]. IEEE transactions on industrial electronics, 2023, 70(9): 9147-9157. DOI:  10.1109/TIE.2022.3210517.
[21] ZHU X R, MENG F Q, XIE Z Y, et al. An inertia and damping control method of DC–DC converter in DC microgrids [J]. IEEE transactions on energy conversion, 2020, 35(2): 799-807. DOI:  10.1109/TEC.2019.2952717.
[22] ZHI N, DING K, DU L, et al. An SOC-based virtual DC machine control for distributed storage systems in DC microgrids [J]. IEEE transactions on energy conversion, 2020, 35(3): 1411-1420. DOI:  10.1109/TEC.2020.2975033.
[23] JIANG Y J, YANG Y, TAN S C, et al. Distribution power loss mitigation of parallel-connected distributed energy resources in low-voltage DC microgrids using a Lagrange multiplier-based adaptive droop control [J]. IEEE transactions on power electronics, 2021, 36(8): 9105-9118. DOI:  10.1109/TPEL.2021.3050506.