[1] 广西壮族自治区人民政府办公厅. 广西壮族自治区人民政府办公厅关于印发广西能源发展“十四五”规划的通知 [J]. 广西壮族自治区人民政府公报, 2022(24): 2-24.

General Office of the People's Government of Guangxi Zhuang Autonomous Region. General Office of the People's Government of Guangxi Zhuang Autonomous Region on the issuance of Guangxi energy development "14th five-year plan" notice [J]. Gazette of the people's government of Guangxi Zhuang autonomous region, 2022(24): 2-24.
[2] 张康, 孙国文. 电力保供的当下之计与长远之策 [J]. 中国电力企业管理, 2022(19): 57-59.

ZHANG K, SUN G W. Current measures and long-term strategies for power supply [J]. China power enterprise management, 2022(19): 57-59.
[3] 王艳兰, 伍静, 唐桥义, 等. 广西长低温雨雪冰冻过程环流特征及低温扰动分析 [J]. 气象科技, 2022, 50(1): 75-84 DOI:  10.19517/j.1671-6345.20200439.

WANG Y L, WU J, TANG Q Y, et al. Analysis on characteristics of atmospheric circulation and low temperature disturbance of long-term catastrophic freezing weather in Guangxi [J]. Meteorological science and technology, 2022, 50(1): 75-84. DOI:  10.19517/j.1671-6345.20200439.
[4] 吴文倩. 不同气象预测数据源对山地风电场风速预测准确率的影响分析 [J]. 气象研究与应用, 2022, 43(1): 31-35. DOI:  10.19849/j.cnki.CN45-1356/P.2022.1.06.

WU W Q. Analysis on the influence of different meteorological forecast data sources on the accuracy of wind speed prediction in mountain wind farms [J]. Journal of meteorological research and application, 2022, 43(1): 31-35. DOI:  10.19849/j.cnki.CN45-1356/P.2022.1.06.
[5] 易贤, 王开春, 马洪林, 等. 大型风力机结冰过程水滴收集率三维计算 [J]. 空气动力学学报, 2013, 31(6): 745-751.

YI X, WANG K C, MA H L, et al. 3-D numerical simulation of droplet collection efficiency in large-scale wind turbine icing [J]. Acta aerodynamica sinica, 2013, 31(6): 745-751.
[6] 曾琦, 陈正洪. 近年来气象灾害对风电场影响的研究进展 [J]. 气象科技进展, 2019, 9(2): 49-55. DOI:  10.3969/j.issn.2095-1973.2019.02.010.

ZENG Q, CHEN Z H. A review of the effect of meteorological disasters on wind farms in recent years [J]. Advances in meteorological science and technology, 2019, 9(2): 49-55. DOI:  10.3969/j.issn.2095-1973.2019.02.010.
[7] 广西壮族自治区气候中心. 广西气候 [M]. 北京: 气象出版社, 2007.

Guangxi Zhuang Autonomous Region Climate Center. The climate of the Guangxi Zhuang autonomous region [M]. Beijing: China Meteorological Press, 2007.
[8] 谷昱君, 黄永章, 杨鑫, 等. 新能源采用同步电机对(MGP)并网暂态稳定性研究 [J]. 南方电网技术, 2021, 15(3): 32-38. DOI:  10.13648/j.cnki.issn1674-0629.2021.03.005.

GU Y J, HUANG Y Z, YANG X, et al. Transient stability research on renewable energy adopting motor-generator pair (MGP) for grid-connection under grid fault [J]. Southern power system technology, 2021, 15(3): 32-38. DOI:  10.13648/j.cnki.issn1674-0629.2021.03.005.
[9] 檀丛青, 王志奇, 陈柳明, 等. 高寒高海拔地区风光互补热电联供系统多目标优化研究 [J]. 分布式能源, 2020, 5(4): 43-50. DOI:  10.16513/j.2096-2185.DE.2003001.

TAN C Q, WANG Z Q, CHEN L M, et al. Multi objective optimization of wind-solar hybrid heat and power generation system in frigid and high-altitude area [J]. Distributed energy, 2020, 5(4): 43-50. DOI:  10.16513/j.2096-2185.DE.2003001.
[10] 李妍君, 何洁琳, 何慧, 等. 2022年2月广西罕见低温雨雪冰冻过程气候特征分析 [J]. 气象研究与应用, 2022, 43(4): 109-114. DOI:  10.19849/j.cnki.CN45-1356/P.2022.4.18.

LI Y J, HE J L, HE H, et al. Climatic characteristics of rare low temperature, rain and snow freezing process in Guangxi in February 2022 [J]. Journal of meteorological research and application, 2022, 43(4): 109-114. DOI:  10.19849/j.cnki.CN45-1356/P.2022.4.18.
[11] 黄治娟, 胡志光, 张秀丽, 等. 风机叶片防覆冰技术研究 [J]. 华北电力术, 2014(6): 16-19, 37. DOI:  10.16308/j.cnki.issn1003-9171.2014.06.007.

HUANG Z J, HU Z G, ZHANG X L, et al. Research on wind turbine blade anti-ice coating technology [J]. North China electric power, 2014(6): 16-19, 37. DOI:  10.16308/j.cnki.issn1003-9171.2014.06.007.
[12] 吴光军, 孙志禹, 朱亚伟, 等. 风电机组叶片防覆冰技术研究分析 [J]. 风能, 2016(9): 62-64. DOI:  10.3969/j.issn.1674-9219.2016.09.018.

WU G J, SUN Z Y, ZHU Y W, et al. Research and analysis of anti-icing technology for wind turbine blades [J]. Wind energy, 2016(9): 62-64. DOI:  10.3969/j.issn.1674-9219.2016.09.018.
[13] 杨亚炬. 风电机组叶片覆冰安全运行边界条件研究 [J]. 河南科技, 2019(16): 59-61 DOI:  10.3969/j.issn.1003-5168.2019.16.024.

YANG Y J. Boundary conditions for safe operation of wind turbine blades covered with ice [J]. Henan science and technology, 2019(16): 59-61. DOI:  10.3969/j.issn.1003-5168.2019.16.024.
[14] 舒立春, 任晓凯, 胡琴, 等. 环境参数对小型风力发电机叶片覆冰特性及输出功率的影响 [J]. 中国电机工程学报, 2016, 36(21): 5873-5878. DOI:  10.13334/j.0258-8013.pcsee.151582.

SHU L C, REN X K, HU Q, et al. Influences of environmental parameters on icing characteristics and output power of small wind turbine [J]. Proceedings of the CSEE, 2016, 36(21): 5873-5878. DOI:  10.13334/j.0258-8013.pcsee.151582.
[15] BARBER S, WANG Y, JAFARI S, et al. The impact of ice formation on wind turbine performance and aerodynamics [J]. Journal of solar energy engineering, 2011, 133(1): 011007. DOI:  10.1115/1.4003187.
[16] LAMRAOUI F, FORTIN G, BENOIT R, et al. Atmospheric icing impact on wind turbine production [J]. Cold regions science and technology, 2014, 100: 36-49. DOI:  10.1016/j.coldregions.2013.12.008.
[17] 舒立春, 李瀚涛, 胡琴, 等. 自然环境叶片覆冰程度对风力机功率损失的影响 [J]. 中国电机工程学报, 2018, 38(18): 5599-5605. DOI:  10.13334/j.0258-8013.pcsee.171001.

SHU L C, LI H T, HU Q, et al. Effects of ice degree of blades on power losses of wind turbines at natural environments [J]. Proceedings of the CSEE, 2018, 38(18): 5599-5605. DOI:  10.13334/j.0258-8013.pcsee.171001.
[18] 许杨, 陈正洪. 风电场风机覆冰期预报方法 [J]. 气象科技, 2021, 49(6): 923-929. DOI:  10.19517/j.1671-6345.20210095.

XU Y, CHEN Z H. Method for forecasting duration of wind turbine icing in wind farms [J]. Meteorological science and technology, 2021, 49(6): 923-929. DOI:  10.19517/j.1671-6345.20210095.
[19] 李仲怡, 叶庚姣, 卢小凤, 等. 基于Makkonen结冰增长模型的风力机覆冰预报 [J]. 广东电力, 2020, 33(10): 127-133. DOI:  10.3969/j.issn.1007-290X.2020.010.014.

LI Z Y, YE G J, LU X F, et al. Wind turbine ice prediction based on Makkonen icing growth model [J]. Guangdong electric power, 2020, 33(10): 127-133. DOI:  10.3969/j.issn.1007-290X.2020.010.014.
[20] MAKKONEN L. Models for the growth of rime, glaze, icicles and wet snow on structures [J]. Philosophical transactions of the royal society A: mathematical, physical and engineering sciences, 2000, 358(1776): 2913-2939. DOI:  10.1098/rsta.2000.0690.
[21] MAKKONEN L. Modeling power line icing in freezing precipitation [J]. Atmospheric research, 1998, 46(1/2): 131-142. DOI:  10.1016/S0169-8095(97)00056-2.
[22] MAKKONEN L. Modeling of ice accretion on wires [J]. Journal of climate and applied meteorology, 1984, 23(6): 929-939. DOI: 10.1175/1520-0450(1984)023<0929:MOIAOW>2.0.CO;2.
[23] MAKKONEN L, LAAKSO T, MARJANIEMI M, et al. Modelling and prevention of ice accretion on wind turbines [J]. Wind engineering, 2001, 25(1): 3-21. DOI:  10.1260/0309524011495791.
[24] 吴文倩. 不同气象预测数据源对山地风电场风速预测准确率的影响分析 [J]. 气象研究与应用, 2022, 43(1): 31-35. DOI:  10.19849/j.cnki.CN45-1356/P.2022.1.06.

WU W Q. Analysis on the influence of different meteorological forecast data sources on the accuracy of wind speed prediction in mountain wind farms [J]. Journal of meteorological research and application, 2022, 43(1): 31-35. DOI:  10.19849/j.cnki.CN45-1356/P.2022.1.06.
[25] 卓毅鑫, 秦意茗, 胡甲秋, 等. 基于组合权重的多模式融合风机气温预测方法 [J]. 南方电网技术, 2023, 17(2): 111-117. DOI:  10.13648/j.cnki.issn1674-0629.2023.02.013.

ZHUO Y X, QIN Y M, HU J Q, et al. Multi-mode fusion fan temperature prediction method based on combination weight [J]. Southern power system technology, 2023, 17(2): 111-117. DOI:  10.13648/j.cnki.issn1674-0629.2023.02.013.
[26] 国家能源局. 陆上风电场覆冰环境评价技术规范: NB/T 10629—2021 [S]. 北京: 中国电力出版社, 2021.

National Energy Administration. Technical code of icing environmental evaluation for onshore wind power projects: NB/T 10629—2021 [S]. Beijing: China Electric Power Press, 2021.