[1] 黄珍瑶, 程诺, 江岳文. 考虑EV调峰需求响应可靠性的V2G聚合商多时间尺度调度策略 [J/OL]. 2024:1-11(2024-04-16) [2024-07-17]. https://doi.org/10.13336/j.1003-6520.hve.20231247.

HUANG Z Y, CHENG N, JIANG Y W. Multi-time-scale scheduling strategy of V2G aggregators considering EV peak regulating demand response reliability [J/OL]. 2024:1-11(2024-04-16) [2024-07-17]. https://doi.org/10.13336/j.1003-6520.hve.20231247.
[2] 王锡凡, 邵成成, 王秀丽, 等. 电动汽车充电负荷与调度控制策略综述 [J]. 中国电机工程学报, 2013, 33(1): 1-10. DOI:  10.13334/j.0258-8013.pcsee.2013.01.005.

WANG X F, SHAO C C, WANG X L, et al. Survey of electric vehicle charging load and dispatch control strategies [J]. Proceedings of the CSEE, 2013, 33(1): 1-10. DOI:  10.13334/j.0258-8013.pcsee.2013.01.005.
[3] 张灿, 张明震. 中国新型公路交通能源综合系统发展对策研究 [J]. 南方能源建设, 2024, 11(5): 95-104. DOI:  10.16516/j.ceec.2024.5.10.

ZHANG C, ZHANG M Z. Countermeasures for the development of China's new highway transportation-energy integrated system [J]. Southern energy construction, 2024, 11(5): 95-104. DOI:  10.16516/j.ceec.2024.5.10.
[4] 蔡黎, 高乐, 徐青山, 等. 电动汽车V2G关键技术研究及应用进展 [J]. 电池, 2020, 50(1): 87-89. DOI:  10.19535/j.1001-1579.2020.01.021.

CAI L, GAO L, XU Q S, et al. Research and application progress in V2G key technology of electric vehicle [J]. Battery bimonthly, 2020, 50(1): 87-89. DOI:  10.19535/j.1001-1579.2020.01.021.
[5] SHI Z H, RUAN J H, HONG Y Y, et al. Dual-module VSG control strategy under unbalanced voltage conditions [J]. Journal of power electronics, 2023, 23(6): 923-934. DOI:  10.1007/s43236-022-00587-8.
[6] 邓文浪, 刘业勇, 郭有贵, 等. 基于三相-单相矩阵变换器的三端口变换器及其在V2G中的应用 [J]. 电工技术学报, 2019, 34(增刊2): 618-628. DOI:  10.19595/j.cnki.1000-6753.tces.L80280.

DENG W L, LIU Y Y, GUO Y G, et al. Three-port converter based on 3-1MC and its application in V2G [J]. Transactions of China electrotechnical society, 2019, 34(Suppl.2): 618-628. DOI:  10.19595/j.cnki.1000-6753.tces.L80280.
[7] HAN J G, ZHOU X, LU S, et al. A three-phase bidirectional grid-connected AC/DC converter for V2G applications [J]. Journal of control science and engineering, 2020, 2020: 8844073. DOI:  10.1155/2020/8844073.
[8] 王军章, 兰征. 虚拟同步发电机用双向直流变换器研究 [J]. 浙江电力, 2019, 38(4): 20-27. DOI:  10.19585/j.zjdl.201904004.

WANG J Z, LAN Z. Study on bidirectional DC/DC converter for virtual synchronous machine [J]. Zhejiang electric power, 2019, 38(4): 20-27. DOI:  10.19585/j.zjdl.201904004.
[9] 赵昕辰. 基于虚拟同步机控制技术的电动汽车V2G系统研究 [D]. 济南: 山东大学, 2020. DOI:  10.27272/d.cnki.gshdu.2020.002543.

ZHAO X C. Research on electric vehicle V2G system based on virtual synchronous machine control technology [D]. Jinan: Shandong University, 2020. DOI:  10.27272/d.cnki.gshdu.2020.002543.
[10] PARAMASIVAM S K, RAMU S K, CHOLAMUTHU P. Unit vector template control strategy-based harmonic mitigation and charging with three phase-three level-three switch Vienna rectifier for level 3 electric vehicle charging applications [J]. International journal of circuit theory and applications, 2024, 52(6): 2889-2915. DOI:  10.1002/cta.3904.
[11] 全生明, 苏舒, 赵楠, 等. 基于最优效率的双有源桥变换器参数设计优化方法 [J]. 电气工程学报, 2022, 17(2): 56-64. DOI:  10.11985/2022.02.007.

QUAN S M, SU S, ZHAO N, et al. Design method of dual active bridge based on the optimum efficiency [J]. Journal of electrical engineering, 2022, 17(2): 56-64. DOI:  10.11985/2022.02.007.
[12] 兰才华, 石荣亮, 王国斌, 等. 基于频率前馈补偿的储能VSG并网有功响应优化策略 [J]. 太阳能学报, 2024, 45(2): 236-243. DOI:  10.19912/j.0254-0096.tynxb.2022-1535.

LAN C H, SHI R L, WANG G B, et al. Optimization strategy of grid-connected active power response of grid-connected active of energy storage VSG based on frequency feedforward compensation [J]. Acta energiae solaris sinica, 2024, 45(2): 236-243. DOI:  10.19912/j.0254-0096.tynxb.2022-1535.
[13] ZHAO X C, WANG H, WANG K. Research on virtual synchronous generator control for vehicle-to-grid system [C]// Anon. Proceedings of 2019 4th Asia Conference on Power and Electrical Engineering, Hangzhou, China, March 28-31, 2019. Hangzhou: IOP, 2019: 56-64. DOI:  10.1088/1757-899X/486/1/012048.
[14] 管敏渊, 姚瑛, 吴圳宾, 等. 基于RBF神经网络的储能VSG控制策略优化 [J]. 浙江电力, 2024, 43(3): 55-64. DOI:  10.19585/j.zjdl.202403007.

GUAN M Y, YAO Y, WU Z B, et al. Optimization of energy storage VSG control strategy based on RBF neural networks [J]. Zhejiang electric power, 2024, 43(3): 55-64. DOI:  10.19585/j.zjdl.202403007.
[15] 朱作滨, 孙树敏, 丁月明, 等. 基于VSG的低电压穿越控制策略研究 [J]. 太阳能学报, 2024, 45(2): 376-383. DOI:  10.19912/j.0254-0096.tynxb.2022-1661.

ZHU Z B, SUN S M, DING Y M, et al. Study on low voltage ride through control strategy based on VSG [J]. Acta energiae solaris sinica, 2024, 45(2): 376-383. DOI:  10.19912/j.0254-0096.tynxb.2022-1661.
[16] WU W H, CHEN Y D, ZHOU L M, et al. Sequence impedance modeling and stability comparative analysis of voltage-controlled VSGs and current-controlled VSGs [J]. IEEE transactions on industrial electronics, 2019, 66(8): 6460-6472. DOI:  10.1109/TIE.2018.2873523.
[17] 程启明, 余德清, 程尹曼, 等. 基于自适应旋转惯量的虚拟同步发电机控制策略 [J]. 电力自动化设备, 2018, 38(12): 79-85. DOI:  10.16081/j.issn.1006-6047.2018.12.012.

CHENG Q M, YU D Q, CHENG Y M, et al. Control strategy of virtual synchronous generator based on adaptive rotational inertia [J]. Electric power automation equipment, 2018, 38(12): 79-85. DOI:  10.16081/j.issn.1006-6047.2018.12.012.
[18] 游磊, 金小明, 刘云. 电动汽车集群充电负荷计算方法研究 [J]. 南方能源建设, 2024, 11(5): 159-167. DOI:  10.16516/j.ceec.2024.5.17.

YOU L, JIN X M, LIU Y. Research on the charging load calculation method for electric vehicle cluster [J]. Southern energy construction, 2024, 11(5): 159-167. DOI:  10.16516/j.ceec.2024.5.17.
[19] 赵浩然. 可再生能源发电与电动汽车的协同调度策略研究 [D]. 济南: 山东大学, 2020. DOI:  10.27272/d.cnki.gshdu.2020.001215.

ZHAO H R. Research on cooperative scheduling strategy of renewable energy and electric vehicles [D]. Jinan: Shandong University, 2020. DOI:  10.27272/d.cnki.gshdu.2020.001215.
[20] 王冠, 刘苏贤, 赵浩然, 等. 考虑电动汽车充电桩无功响应的优化调度策略 [J]. 湖南大学学报(自然科学版), 2021, 48(10): 152-160. DOI:  10.16339/j.cnki.hdxbzkb.2021.10.018.

WANG G, LIU S X, ZHAO H R, et al. Optimal dispatching strategy considering reactive response of electric vehicle charging piles [J]. Journal of Hunan university (Natural Sciences Edition), 2021, 48(10): 152-160. DOI:  10.16339/j.cnki.hdxbzkb.2021.10.018.
[21] 赵玉, 徐天奇, 李琰, 等. 基于分时电价的电动汽车调度策略研究 [J]. 电力系统保护与控制, 2020, 48(11): 92-101. DOI:  10.19783/j.cnki.pspc.190770.

ZHAO Y, XU T Q, LI Y, et al. Research on electric vehicle scheduling strategy based on time-shared electricity price [J]. Power system protection and control, 2020, 48(11): 92-101. DOI:  10.19783/j.cnki.pspc.190770.
[22] 王晞, 汪伟, 王海燕, 等. 计及用户电池损耗的电动汽车分布式两阶段调度策略 [J]. 电测与仪表, 2022, 59(1): 120-126. DOI:  10.19753/j.issn1001-1390.2022.01.016.

WANG X, WANG W, WANG H Y, et al. Distributed two-stage scheduling strategy of EV considering user battery consumption [J]. Electrical measurement & instrumentation, 2022, 59(1): 120-126. DOI:  10.19753/j.issn1001-1390.2022.01.016.
[23] 戴越繁, 杨伟. 计及电池动态损耗的电动汽车分层调度策略 [J]. 电测与仪表, 2021, 58(7): 19-26. DOI:  10.19753/j.issn1001-1390.2021.07.003.

DAI Y F, YANG W. A hierarchical optimal scheduling strategy for electric vehicles considering dynamic battery loss [J]. Electrical measurement & instrumentation, 2021, 58(7): 19-26. DOI:  10.19753/j.issn1001-1390.2021.07.003.
[24] 陈海瑞, 米增强, 贾雨龙, 等. 计及电价不确定的电动汽车聚合商区间调度策略 [J]. 电测与仪表, 2021, 58(12): 24-30. DOI:  10.19753/j.issn1001-1390.2021.12.004.

CHEN H R, MI Z Q, JIA Y L, et al. Interval scheduling strategy for electric vehicle aggregator considering uncertainty of electricity price [J]. Electrical measurement & instrumentation, 2021, 58(12): 24-30. DOI:  10.19753/j.issn1001-1390.2021.12.004.
[25] 薄鑫, 韩笑, 许偲轩, 等. 基于指标排序的电动汽车聚合控制策略 [J]. 电测与仪表, 2019, 56(12): 135-139,152. DOI:  10.19753/j.issn1001-1390.2019.012.022.

BO X, HAN X, XU S X, et al. Research on the control strategy of electric vehicle polymerization based on the ranking of indicators [J]. Electrical measurement & instrumentation, 2019, 56(12): 135-139,152. DOI:  10.19753/j.issn1001-1390.2019.012.022.
[26] EHSANI M, FALAHI M, LOTFIFARD S. Vehicle to grid services: potential and applications [J]. Energies, 2012, 5(10): 4076-4090. DOI:  10.3390/en5104076.
[27] 杨铎. 计及电动汽车电池集中充电站接入的电网稳定性分析 [D]. 北京: 华北电力大学, 2014. DOI:  10.7666/d.Y2658510.

YANG D. Analysis of electric vehicle battery centralized charging station on power system stability [D]. Beijing: North China Electric Power University, 2014. DOI:  10.7666/d.Y2658510.