[1] 张富春, 郭婷, 黎晓辰, 等. ±800 kV与±500 kV换流站共用接地极时入地电流对极址附近电位分布的影响 [J]. 电力建设, 2014, 35(7): 115-120. DOI:  10.3969/j.issn.1000-7229.2014.07.020.

ZHANG F C, GUO T, LI X C, et al. Influence of ground-return current of ±800 kV and ±500 kV converter stations sharing a common grounding electrode on potential distribution [J]. Electric power construction, 2014, 35(7): 115-120. DOI:  10.3969/j.issn.1000-7229.2014.07.020.
[2] 孙冰, 罗忠游, 于永军, 等. ±1 100 kV昌吉换流站与±800 kV天山换流站共同作用的直流偏磁问题研究 [J]. 高压电器, 2020, 56(8): 121-127. DOI:  10.13296/j.1001-1609.hva.2020.08.019.

SUN B, LUO Z Y, YU Y J, et al. Study on the DC magnetic bias of the ±1 100 kV Changji converter station and the ±800 kV Tianshan converter station [J]. High voltage apparatus, 2020, 56(8): 121-127. DOI:  10.13296/j.1001-1609.hva.2020.08.019.
[3] 曾富, 樊艳芳, 耿山. 特高压直流接地极优化选址研究 [J]. 高压电器, 2020, 56(10): 205-211. DOI:  10.13296/j.1001-1609.hva.2020.10.032.

ZENG F, FAN Y F, GENG S. Research on optimal location of UHVDC grounding electrode [J]. High voltage apparatus, 2020, 56(10): 205-211. DOI:  10.13296/j.1001-1609.hva.2020.10.032.
[4] 陈俊宇, 张卓杰. 南方电网直流工程共用接地极的风险及影响分析 [J]. 电工电气, 2021(11): 19-22,29. DOI:  10.3969/j.issn.1007-3175.2021.11.004.

CHEN J Y, ZHANG Z J. Analysis on the risks and impact of common grounding electrodes in the DC project of China southern power grid [J]. Electrotechnics electric, 2021(11): 19-22,29. DOI:  10.3969/j.issn.1007-3175.2021.11.004.
[5] 李瑞显, 胡上茂, 罗炜, 等. 鱼龙岭共用接地极线路检修对换流站内变压器及人身安全的影响 [J]. 南方电网技术, 2019, 13(7): 58-63. DOI:  10.13648/j.cnki.issn1674-0629.2019.07.008.

LI R X, HU S M, LUO W, et al. Influence of Yulongling common grounding electrode line maintenance on transformers and personal safety in converter station [J]. Southern power system technology, 2019, 13(7): 58-63. DOI:  10.13648/j.cnki.issn1674-0629.2019.07.008.
[6] 徐攀腾, 朱博, 喻文翔, 等. 乌东德与滇西北共用接地极线对直流输电系统影响研究 [J]. 电工技术, 2022(7): 49-53. DOI:  10.19768/j.cnki.dgjs.2022.07.014.

XU P T, ZHU B, YU W X, et al. Research on the influence of the common ground electrode line between Wudongde and northwest Yunnan on the HVDC transmission system [J]. Electric engineering, 2022(7): 49-53. DOI:  10.19768/j.cnki.dgjs.2022.07.014.
[7] 李坤泉, 李瑞芳, 杜浩, 等. 超高压直流输电线路共用接地极电气特性研究 [J]. 电工技术, 2021(16): 124-128. DOI:  10.19768/j.cnki.dgjs.2021.16.044.

LI K Q, LI R F, DU H, et al. Research on characteristics of common grounding electrode in EHVDC transmission lines [J]. Electric engineering, 2021(16): 124-128. DOI:  10.19768/j.cnki.dgjs.2021.16.044.
[8] 孔志达. 独立接地极改造为共用接地极方案研究 [J]. 南方能源建设, 2015, 2(3): 112-117. DOI:  10.16516/j.gedi.issn2095-8676.2015.03.022.

KONG Z D. Research on the plan of independent earth electrode reconstructed to common earth electrode [J]. Southern energy construction, 2015, 2(3): 112-117. DOI:  10.16516/j.gedi.issn2095-8676.2015.03.022.
[9] 卢毓欣, 赵晓斌, 李岩, 等. 共用接地极直流输电工程运行方式转换过程中换流站地网分流的影响及解决方案 [J]. 南方电网技术, 2022, 16(2): 103-110. DOI:  10.13648/j.cnki.issn1674-0629.2022.02.014.

LU Y X, ZHAO X B, LI Y, et al. Influence and countermeasures of the shunt current of the grounding grid of the converter station in operation modes conversion for HVDC transmission project with common ground electrode [J]. Southern power system technology, 2022, 16(2): 103-110. DOI:  10.13648/j.cnki.issn1674-0629.2022.02.014.
[10] 张涛, 谈小瑞, 黄悦华. 特高压直流共用接地极的暂态温升分析 [J]. 高电压技术, 2015, 41(11): 3672-3678. DOI:  10.13336/j.1003-6520.hve.2015.11.021.

ZHANG T, TAN X R, HUANG Y H. Analysis on transient temperature rise of UHVDC common grounding electrode [J]. High voltage engineering, 2015, 41(11): 3672-3678. DOI:  10.13336/j.1003-6520.hve.2015.11.021.