[1] 国家能源局. 国家能源局综合司关于做好可再生能源发展“十四五”规划编制工作有关事项的通知 [EB/OL]. (2020-04-09) [2021-11-29]. http://zfxxgk.nea.gov.cn/2020-04/09/c_138978661.htm.

National Energy Administration. Notice of the comprehensive department of the national energy administration on doing a good job in the preparation of the “14th Five-Year Plan” for the Development of Renewable Energy [EB/OL]. (2020-04-09) [2021-11-29]. http://zfxxgk.nea.gov.cn/ 2020-04/09/c _138978661.htm.
[2] 王风云, 张爽. 我国可再生能源发电趋势与市场空间研究−兼析“十四五”期间可再生能源发展潜力 [J]. 价格理论与实践, 2020(4): 36-40. DOI:  10.19851/j.cnki.cn11-1010/f.2020.04.108.

WANG F Y, ZHANG S. Research on the trend and market capacity of renewable energy power generation in China——And predictive analysis of the renewable energy development during the 14th five-year Plan period [J]. Price:Theory & Practice, 2020(4): 36-40. DOI:  10.19851/j.cnki.cn11-1010/f.2020.04.108.
[3] 邹兰青. 规模风电并网条件下火电机组深度调峰多角度经济性分析 [D]. 北京: 华北电力大学(北京), 2017.

ZOU L Q. Multi-angle analysis for deep peak regulation of thermal units with large scale wind power connected power system [D]. Beijing: North China Electric Power University(Beijing), 2016.
[4] 周子程. 火电机组深度调峰补偿模型的研究 [D]. 大连: 大连理工大学, 2017.

ZHOU Z C. Research on deep peak shaving compensation model of thermal power unit [D]. Dalian: Dalian University of technology, 2017.
[5] 2016年风电并网运行情况 [J]. 中国能源, 2017, 39(2): 47.

Grid connected operation of wind power in 2016 [J]. Energy of China, 2017, 39(2): 47.
[6] 杨倩鹏, 林伟杰, 王月明, 等. 火力发电产业发展与前沿技术路线 [J]. 中国电机工程学报, 2017, 37(13): 3787-3794. DOI:  10.13334/j.0258-8013.pcsee.170187.

YANG Q P, LIN W J, WANG Y M, et al. Industry development and frontier technology roadmap of thermal power generation [J]. Proceedings of the CSEE, 2017, 37(13): 3787-3794. DOI:  10.13334/j.0258-8013.pcsee.170187.
[7] 周子程, 王海霞, 吕泉, 等. 计及主客体因素的火电机组深度调峰补偿模型 [J]. 南方电网技术, 2017, 11(5): 47-55. DOI:  10.13648/j.cnki.issn1674-0629.2017.05.008.

ZHOU Z C, WANG H X, LV Q, et al. Deep peak load regulation compensation model of thermal power units considering subjective and objective factors [J]. Southern Power System Technology, 2017, 11(5): 47-55. DOI:  10.13648/j.cnki.issn1674-0629.2017.05.008.
[8] 王金星, 卓建坤, 李菁, 等. 适应燃煤电厂灵活调峰的安全改造技术探讨 [C]//国家火力发电工程技术研究中心. 2017热电联产高效与灵活性改造技术研讨会, 丹东, 2017-08-16. 北京: 国家火力发电工程技术研究中心, 2017: 80-86.

WANG J X, ZHUO J K, LI J, et al. Discussion on safety transformation technology suitable for flexible peak shaving of coal-fired power plant [C]//National Thermal Power EngineeringTechnology Research Center. Proceedings of 2017 Cogeneration of Heat and Power Technical Workshop on Flexibility and Flexibility, Dandong, August 16, 2017. National Thermal Power Engineering Technology Research Center, 2017: 80-86.
[9] 周俊虎, 赵玉晓, 刘建忠, 等. 低NOx煤粉燃烧器技术的研究进展与前景展望 [J]. 热力发电, 2005, 34(8): 1-6. DOI:  10.19666/j.rlfd.2005.08.001.

ZHOU J H, ZHAO Y X, LIU J Z, et al. Research advancement and future prospect of low NOx burners for pulverized coal [J]. Thermal Power Generation, 2005, 34(8): 1-6. DOI:  10.19666/j.rlfd.2005.08.001.
[10] 关新河, 李彦, 朱群志, 等. 1 000 MW超超临界锅炉低NOx燃烧器改造的数值模拟研究 [J]. 中国电机工程学报, 2019, 39(8): 2376-2383. DOI:  10.13334/j.0258-8013.pcsee.181513.

GUAN X H, LI Y, ZHU Q Z, et al. Numerical simulation study on retrofit of low NOx burner for 1 000 MW ultra-supercritical boiler [J]. Proceedings of the CSEE, 2019, 39(8): 2376-2383. DOI:  10.13334/j.0258-8013.pcsee.181513.
[11] 刘福国, 郭新根, 王守恩, 等. 一种空气分级切向燃烧烟煤锅炉的燃尽特性 [J]. 中国电机工程学报, 2019, 39(7): 2113-2124. DOI:  10.13334/j.0258-8013.pcsee.180653.

LIU F G, GUO X G, WANG S E, et al. Burnout characteristics of bituminous coal in tangentially fired furnace with air staging [J]. Proceedings of the CSEE, 2019, 39(7): 2113-2124. DOI:  10.13334/j.0258-8013.pcsee.180653.
[12] GLUSHKOV D O, KUZNETSOV G V, CHEBOCHAKOVA D A, et al. Experimental study of coal dust ignition characteristics at oil-free start-up of coal-fired boilers [J]. Applied Thermal Engineering:Design, processes, equipment, economics, 2018, 142: 371-379. DOI:  10.1016/j.applthermaleng.2018.07.010.
[13] 胡胜林, 刘要强. 锅炉低负荷稳燃措施 [J]. 决策探索, 2017(9): 9-10.

HU S L, LIU Y Q. Boiler low-load stable combustion measures [J]. Policy Research & Exploration, 2017(9): 9-10.
[14] 张广才, 周科, 鲁芬, 等. 燃煤机组深度调峰技术探讨 [J]. 热力发电, 2017, 46(9): 17-23. doi:  10.3969/j.issn.1002-3364.2017.09.017

ZHANG G C, ZHOU K, LU F, et al. Discussions on deep peaking technology of coal-fired power plants [J]. Thermal Power Generation, 2017, 46(9): 17-23. doi:  10.3969/j.issn.1002-3364.2017.09.017
[15] 万燕成, 毛志慧. 变负荷条件下降低火电机组厂用电的运行优化措施 [J]. 湖北电力, 2017, 41(9): 39-42. DOI:  10.19308/j.hep.2017.09.009.

WAN Y C, MAO Z H. The operating optimization for decreasing the plant service power of coal-fire power plant under varied power load [J]. Hubei Electric Power, 2017, 41(9): 39-42. DOI:  10.19308/j.hep.2017.09.009.
[16] HAN Y, SHEN B, ZHANG T. A techno-economic assessment of fuel switching options of addressing environmental challenges of coal-fired industrial boilers: an analytical work for China [J]. Energy Procedia, 2017, 142: 3083-3087. DOI:  10.1016/j.egypro.2017.12.448.
[17] 申融容, 玄婉玥, 张健, 等. 面向电源侧灵活性提升的热电解耦技术综述 [J]. 中国能源, 2021, 43(5): 51-59. doi:  10.3969/j.issn.1003-2355.2021.05.008

SHEN R R, XUAN W Y, ZHANG J, et al. A review of thermo-decoupling technology for improving flexibility of power supply side [J]. Energy of China, 2021, 43(5): 51-59. doi:  10.3969/j.issn.1003-2355.2021.05.008
[18] 龚彦豪, 许鑫玮, 王登辉, 等. 新型低氮旋流燃烧器NOx排放特性 [J]. 洁净煤技术, 2019, 25(6): 118-125. DOI:  10.13226/j.issn.1006-6772.19060601.

GONG Y H, XU X W, WANG D H, et al. NOx emissions characteristics of a novel low-NO x swirl burner [J]. Clean Coal Technology, 2019, 25(6): 118-125. DOI:  10.13226/j.issn.1006-6772.19060601.
[19] 牛艳青, 薛旭峰, 张浩, 等. 多级调风预燃式旋流燃烧器冷态试验研究 [J]. 洁净煤技术, 2021, 27(5): 196-203. DOI:  10.13226/j.issn.1006-6772.20051203.

NIU Y Q, XUE X F, ZHANG H, et al. Cold experiment research of multi-stage air-regulating pre-combustion cyclone burner [J]. Clean Coal Technology, 2021, 27(5): 196-203. DOI:  10.13226/j.issn.1006-6772.20051203.
[20] 陈迪训, 邱纪华. 双回流稳燃腔的实验研究 [J]. 华中理工大学学报, 1990(6): 119-123. DOI:  10.13245/j.hust.1990.06.019.

CHEN D X, QIU J H. An experimental investigation of a stabilizing combustion cavity with twin reflow zones [J]. Journal of Huazhong University of Science and Technology, 1990(6): 119-123. DOI:  10.13245/j.hust.1990.06.019.
[21] 宋民航, 黄云, 黄骞, 等. 旋流煤粉燃烧器低负荷稳燃技术探讨 [J]. 中国电机工程学报, 2021, 41(13): 4552-4565. DOI:  10.13334/j.0258-8013.pcsee.210311.

SONG M H, HUANG Y, HUANG Q, et al. Discussion on low-load stable combustion technology of swirl pulverized-coal burner [J]. Proceedings of the CSEE, 2021, 41(13): 4552-4565. DOI:  10.13334/j.0258-8013.pcsee.210311.
[22] LI S, CHEN Z C, HE E, et al. Combustion characteristics and NOx formation of a retrofitted low-volatile coal-fired 330 MW utility boiler under various loads with deep-air-staging [J]. Applied Thermal Engineering, 2017, 110: 223-233. DOI:  10.1016/j.applthermaleng.2016.08.159.
[23] 李伟, 蔡勇, 张晓磊, 等. 深度调峰工况锅炉主要辅机运行安全性分析 [J]. 广东电力, 2019, 32(11): 63-69. doi:  10.3969/j.issn.1007-290X.2019.011.008

LI W, CAY Y, ZHANG X L, et al. Analysis of operation safety of main auxiliaries of boilers under deep peak shaving [J]. Guangdong Electric Power, 2019, 32(11): 63-69. doi:  10.3969/j.issn.1007-290X.2019.011.008
[24] 陈辉, 王爱英, 戴维葆, 等. 高灰分烟煤煤粉细度对燃烧特性及低负荷稳燃影响研究 [J]. 电站系统工程, 2020, 36(5): 13-15.

CHEN H, WANG A Y, DAI W B, et al. Study on effect of pulverized coal fineness on combustion characteristics and low load stable combustion of high ash bituminous coal [J]. Power System Engineering, 2020, 36(5): 13-15.
[25] 昂永波. 350 MW超临界机组深度调峰运行优化调整技术分析 [J]. 内蒙古电力技术, 2018, 36(1): 32-36.

ANG Y B. Adjustment technology analysis of deep cyclic operation optimization of 350 MW supercritical unit [J]. Inner Mongolia Electric Power, 2018, 36(1): 32-36.
[26] MESSERLE V E, KARPENKO E I, USTIMENKO A B. Plasma assisted power coal combustion in the furnace of utility boiler: numerical modeling and full-scale test [J]. Fuel, 2014, 126(Jun.15): 294-300. DOI:  10.1016/j.fuel.2014.02.047.
[27] SUGIMOTO M, MARUTA K, TAKEDA K, et al. Stabilization of pulverized coal combustion by plasma assist [J]. Thin Solid Films, 2002, 407(1-2): 186-191. DOI:  10.1016/S0040-6090(02)00035-4.
[28] LIU C, LI Z, KONG W, et al. Bituminous coal combustion in a full-scale start-up ignition burner: influence of the excess air ratio [J]. Energy, 2010, 35(10): 4102-4106. DOI:  10.1016/j.energy.2010.06.023.
[29] 宋继坤, 蔡巍, 蔡飞, 等. 微气点火技术在某热电厂的应用与研究 [J]. 机电信息, 2019(32): 103-104. DOI:  10.19514/j.cnki.cn32-1628/tm.2019.32.059.

SONG J K, CAI W, CAI F, et al. Application and research of micro-gas ignition technology in a thermal power plant [J]. Mechanical and Electrical Information, 2019(32): 103-104. DOI:  10.19514/j.cnki.cn32-1628/tm.2019.32.059.
[30] 李文蛟. 感应式加热煤粉锅炉无油直接点火燃烧器的基础与试验研究 [D]. 杭州: 浙江大学, 2000.

LI W J. Research on the induction-heating burner for the pulverized coal fired boilers [D]. Hangzhou: Zhejiang University, 2000.
[31] LI W J, CEN K F, ZHENG C G, et al. Induction-heating ignition of pulverized coal stream [J]. Fuel, 2004, 83(16): 2103-2107. DOI:  10.1016/j.fuel.2004.06.011.
[32] SHEN T, SONG M H, HUANG Y, et al. The effectiveness of a novel coal-igniting-fuel technology and application in a direct current burner [J]. Fuel, 2021, 306(11): 121503. DOI:  10.1016/j.fuel.2021.121503.
[33] 刘维岐, 汪山入, 吴炬. 350 MW超临界机组低负荷运行优化试验研究 [J], 东北电力技术, 2021, 42(7): 5-8.

LIU W Q, WANG S R, WU J, et al. Experimental study on low load operation optimization of 350 MW supercritical unit [J]. Northeast Electric Power Technology, 2021, 42(7): 5-8.
[34] 周俊波, 刘茜, 张华, 等. 典型燃煤锅炉低负荷及变负荷运行控制特性分析 [J]. 热力发电, 2018, 47(9): 34-40. DOI:  10.19666/j.rlfd.201803071.

ZHOU J B, LIU X, ZHANG H, et al. Control characteristic analysis of typical coal-fired boilers during low load or variable load running [J]. Thermal Power Generation, 2018, 47(9): 34-40. DOI:  10.19666/j.rlfd.201803071.
[35] 王桂林, 甘智勇, 周义刚, 等. 深度调峰燃煤锅炉超净排放关键因素分析 [J]. 资源节约与环保, 2017(10): 12-14. DOI:  10.16317/j.cnki.12-1377/x.2017.10.007.

WANG G L, GAN Z Y, ZHOU Y G, et al. Analysis on key factors of ultra-clean emission of deep peak shaving coal-fired boiler [J]. Resources Economization & Environmental Protection, 2017(10): 12-14. DOI:  10.16317/j.cnki.12-1377/x.2017.10.007.
[36] 王憧北. 应用热水再循环技术实现宽负荷脱硝 [J]. 锅炉技术, 2018, 49(4): 71-75. doi:  10.3969/j.issn.1672-4763.2018.04.015

WANG C B. Application of hot water recirculation technology to realize wide load de-NOx [J]. Boiler Technology, 2018, 49(4): 71-75. doi:  10.3969/j.issn.1672-4763.2018.04.015
[37] 王凤池, 靖长财, 王晨. 600 MW亚临界机组超低负荷脱硝技术研究与应用 [J]. 锅炉技术, 2018, 49(4): 16-19. doi:  10.3969/j.issn.1672-4763.2018.04.004

WANG F C, JING C C, WANG C. Denitration technology research and application at super low loads of 600 MW subcritical unit [J]. Boiler Technology, 2018, 49(4): 16-19. doi:  10.3969/j.issn.1672-4763.2018.04.004
[38] 王鹏. 低负荷运行方式对机组经济性的影响 [J]. 城市建设理论研究(电子版), 2013(35): 1-6.

WANG P. The influence of low-load operation mode on unit economy [J]. ChengShi Jianshe LiLun Yan Jiu (Electronic Edition), 2013(35): 1-6.
[39] 周文胜. 提高机组低负荷运行经济性的讨论 [J]. 湖南电力, 2003, 23(3): 56-57. doi:  10.3969/j.issn.1008-0198.2003.03.021

ZHOU W S. Discussion on improvement of economical operation of light-loaded units [J]. Hunan Electric Power, 2003, 23(3): 56-57. doi:  10.3969/j.issn.1008-0198.2003.03.021
[40] 沈建龙, 李晓东. 机组在低负荷运行下的节能控制方式探讨 [J]. 宁夏电力, 2007(6): 53-55. doi:  10.3969/j.issn.1672-3643.2007.06.020

SHEN J L, LI X D. Discussion on energy saving control mode under low load operation of power units [J]. Ningxia Electric Power, 2007(6): 53-55. doi:  10.3969/j.issn.1672-3643.2007.06.020
[41] 朱光明, 焦庆丰, 李明, 等. 大型火电机组低负荷运行经济性研究 [J]. 湖南电力, 2008, 28(1): 24-26+34. doi:  10.3969/j.issn.1008-0198.2008.01.007

ZHU G M, JIAO Q F, LI M, et al. Research on economic efficiency of low load operation in large thermal power units [J]. Hunan Electric Power, 2008, 28(1): 24-26+34. doi:  10.3969/j.issn.1008-0198.2008.01.007
[42] 吕泉, 陈天佑, 王海霞, 等. 热电厂参与风电调峰的方法评述及展望 [J]. 中国电力, 2013, 46(11): 129-136+141. doi:  10.3969/j.issn.1004-9649.2013.11.026

LV Q, CHEN T Y, WANG H X, et al. Review and perspective of integrating wind power into CHP power system for peak regulation [J]. Electric Power, 2013, 46(11): 129-136+141. doi:  10.3969/j.issn.1004-9649.2013.11.026
[43] 陈翠琴, 田亮. 深度调峰工况下锅炉汽包虚假水位分析 [J]. 电力科学与工程, 2019, 35(5): 48-53. doi:  10.3969/j.ISSN.1672-0792.2019.05.009

CHEN C Q, TIAN L. Analysis of false water level of drum boiler under deep peak regulation conditions [J]. Electric Power Science & Engineering, 2019, 35(5): 48-53. doi:  10.3969/j.ISSN.1672-0792.2019.05.009
[44] 马玉华, 邢长清, 徐君诏, 等. 深度调峰负荷时亚临界自然循环锅炉水循环安全计算与分析 [J]. 热力发电, 2018, 47(10): 108-114. DOI:  10.19666/j.rlfd.201712172.

MA Y H, XING C Q, XU J Z, et al. Safety calculation and analysis for thermal-hydraulic circulation of a subcritical natural circulation boiler at severe peak load regulation [J]. Thermal Power Generation, 2018, 47(10): 108-114. DOI:  10.19666/j.rlfd.201712172.
[45] 马军, 王福平. 300 MW锅炉深度调峰运行调整的探索和实践 [J]. 黑龙江科学, 2018, 9(18): 1-5. doi:  10.3969/j.issn.1674-8646.2018.18.001

MA J, WANG F P. Exploration and practice of 300 MW boiler deep peak load adjustment [J]. Heilongjiang Science, 2018, 9(18): 1-5. doi:  10.3969/j.issn.1674-8646.2018.18.001
[46] 王斌, 马涛. 低负荷时炉膛出口烟温偏差大的原因分析及运行调整 [J]. 河北电力技术, 2019, 38(4): 44-46. doi:  10.3969/j.issn.1001-9898.2019.04.016

WANG B, MA T. Cause analysis and operation adjustment of large temperature deviation of furnace outlet at low load [J]. Hebei Electric Power, 2019, 38(4): 44-46. doi:  10.3969/j.issn.1001-9898.2019.04.016
[47] 周科, 成汭珅, 解冰, 等. 典型旋流燃烧器低负荷稳燃特性试验 [J]. 热力发电, 2020, 49(9): 121-126. DOI:  10.19666/j.rlfd.201912206.

ZHOU K, CHEN R S, XIE B, et al. Experimental study on combustion stability characteristics of typical swirl burners at low load [J]. Thermal Power Generation, 2020, 49(9): 121-126. DOI:  10.19666/j.rlfd.201912206.
[48] 刘辉. 新型低NOx旋流燃烧器关键参数对稳燃特性的影响研究 [D]. 西安: 西安热工研究院有限公司, 2019.

LIU H. Investigation on the influence of key parameters of a new type low NOx swirl burner on combustion stability [D]. Xi'an: Xi'an Thermal Power Research Institute Co. , Ltd. , 2019.
[49] 鲁学斌, 姚力. 600 MW超临界四墙切圆燃烧机组深度调峰技术研究 [J]. 电力学报, 2021, 36(3): 283-290. DOI:  10.13357/j.dlxb.2021.035.

LU X B, YAO L. Research on deep peak shaving technology of a 600 MW supercritical four-wall tangentially fired unit [J]. Journal of Electric Power, 2021, 36(3): 283-290. DOI:  10.13357/j.dlxb.2021.035.
[50] 张振宇, 王刚, 刘宗奎, 等. 330 MW机组深度调峰控制系统问题分析及优化 [J]. 能源研究与管理, 2021(2): 119-123. DOI:  10.16056/j.2096-7705.2021.02.023.

ZHANG Z Y, WANG G, LIU Z K, et al. Analysis and optimization of deep peak load regulation control system for 330 MW power unit [J]. Jiangxi Energy, 2021(2): 119-123. DOI:  10.16056/j.2096-7705.2021.02.023.
[51] 鲍铁军, 刘建平, 侯志, 等. 440 t/h循环流化床机组深度调峰工况下燃烧优化与机炉协调控制的实现 [J]. 锅炉制造, 2021(4): 25-27+30.

BAO T J, LIU J P, HOU Z, et al. Realization of combustion optimization and boiler-turbine coordinated control for 440 t/h CFB unit under deep peak shaving condition [J]. Boiler Manufacturing, 2021(4): 25-27+30.
[52] 王立, 王燕晋, 李战国, 等. 火力发电机组深度调峰试验及优化 [J]. 发电设备, 2019, 33(2): 133-137. doi:  10.3969/j.issn.1671-086X.2019.02.014

WANG L, WANG Y J, LI Z G, et al. Deep peak shaving tests and optimization for thermal power units [J]. Power Equipment, 2019, 33(2): 133-137. doi:  10.3969/j.issn.1671-086X.2019.02.014
[53] 张振星. 基于智能优化算法的电站锅炉燃烧优化 [D]. 北京: 华北电力大学(北京), 2015.

ZHANG Z X. Utility boiler combustion optimization based on intelligent optimization algorithm [D]. Beijing: North China Electric Power University(Beijing), 2015.
[54] 高明明, 于浩洋, 吕俊复, 等. 循环流化床氮氧化物排放预测模型及优化控制研究 [J]. 洁净煤技术, 2020, 26(3): 46-51. DOI:  10.13226/j.issn.1006-6772.20030501.

GAO M M, YU H Y, LV J F, et al. Study on prediction model and optimal control of nitrogen oxides emission of circulating fluidized bed [J]. Clean Coal Technology, 2020, 26(3): 46-51. DOI:  10.13226/j.issn.1006-6772.20030501.
[55] 孙萌萌, 王雷. 采用电极锅炉蓄能的调峰方法经济性分析 [J]. 沈阳工程学院学报(自然科学版), 2019, 15(4): 327-331. DOI:  10.13888/j.cnki.jsie(ns).2019.04.008.

SUN M M, WANG L. Economic analysis of peak regulation method in heat grid with electrode boiler for energy storage [J]. Journal of Shenyang Institute of Engineering (Natural Science Edition), 2019, 15(4): 327-331. DOI:  10.13888/j.cnki.jsie(ns).2019.04.008.
[56] ANDERSEN T V. Integration of 50% wind power in a CHP based power system: a model-based analysis of the impacts of increasing wind power and the potentials of flexible power generation [D]. Denmark: Technical University of Denmark, 2009.
[57] 孙海峰, 王兆辉, 王建峰, 等. 600 MW超临界机组深度调峰安全可靠运行解析 [J]. 华电技术, 2020, 42(12): 94-100. doi:  10.3969/j.issn.1674-1951.2020.12.016

SUN H F, WANG Z H, WANG J F, et al. Analysis on safety and reliability of 600 MW supercritical units' deep peak regulation [J]. Huadian Technology, 2020, 42(12): 94-100. doi:  10.3969/j.issn.1674-1951.2020.12.016
[58] 李军徽, 张嘉辉, 穆钢, 等. 储能辅助火电机组深度调峰的分层优化调度 [J]. 电网技术, 2019, 43(11): 3961-3969. DOI:  10.13335/j.1000-3673.pst.2019.1368.

LI J H, ZHANG J H, MU G, et al. Hierarchical optimization scheduling of deep peak shaving for energy-storage auxiliary thermal power generating units [J]. Power System Technology, 2019, 43(11): 3961-3969. DOI:  10.13335/j.1000-3673.pst.2019.1368.
[59] 杨韵, 蔡秋娜, 闫斌杰, 等. 燃煤机组调峰特性分析及优化运行 [J]. 电气应用, 2018, 37(12): 89-92.

YANG Y, CAI Q N, YAN B J, et al. Peak shaving characteristic analysis and optimal operation of coal-fired units [J]. Electrotechnical Application, 2018, 37(12): 89-92.