[1] |
陈伟, 李少东, 孙勇, 等. 垂直型直流接地极埋深的优化配置研究 [J]. 电瓷避雷器, 2020(2): 56-63. DOI: 10.16188/j.isa.1003-8337.2020.02.010.
CHEN W, LI S D, SUN Y, et al. Study on the optimal configuration of buried depth of vertical DC grounding electrodes [J]. Insulators and surge arresters, 2020(2): 56-63. DOI: 10.16188/j.isa.1003-8337.2020.02.010. |
[2] |
梁旭明, 张平, 常勇. 高压直流输电技术现状及发展前景 [J]. 电网技术, 2012, 36(4): 1-9. DOI: 10.13335/j.1000-3673.pst.2012.04.024.
LIANG X M, ZHANG P, CHANG Y. Recent advances in high-voltage direct-current power transmission and its developing potential [J]. Power system technology, 2012, 36(4): 1-9. DOI: 10.13335/j.1000-3673.pst.2012.04.024. |
[3] |
曾富, 樊艳芳, 耿山. 特高压直流接地极优化选址研究 [J]. 高压电器, 2020, 56(10): 205-211. DOI: 10.13296/j.1001-1609.hva.2020.10.032.
ZENG F, FAN Y F, GENG S. Research on optimal location of UHVDC grounding electrode [J]. High voltage apparatus, 2020, 56(10): 205-211. DOI: 10.13296/j.1001-1609.hva.2020.10.032. |
[4] |
饶宏, 李岩, 黎小林, 等. 4个直流输电工程共用1个接地极运行方式的研究 [J]. 高电压技术, 2012, 38(5): 1179-1185.
RAO H, LI Y, LI X L, et al. Study on four HVDC systems sharing a common ground electrode [J]. High voltage engineering, 2012, 38(5): 1179-1185. |
[5] |
黄成, 孙帮新, 王彦峰. 共用接地极技术在云广特高压和贵广Ⅱ超高压直流输电工程中的应用 [J]. 广东输电与变电技术, 2007(5): 18-20,36. DOI: 10.3969/j.issn.1672-6324.2007.05.005.
HUANG C, SUN B X, WANG Y F. The application of common grounding electrode technique in Yun-Guang ultra HVDC and Gui-Guang Ⅱ HVDC projects [J]. Guangdong power transmission technology, 2007(5): 18-20,36. DOI: 10.3969/j.issn.1672-6324.2007.05.005. |
[6] |
陈俊宇, 张卓杰. 南方电网直流工程共用接地极的风险及影响分析 [J]. 电工电气, 2021(11): 19-22,29. DOI: 10.3969/j.issn.1007-3175.2021.11.004.
CHEN J Y, ZHANG Z J. Analysis on the risks and impact of common grounding electrodes in the DC project of China southern power grid [J]. Electrotechnics electric, 2021(11): 19-22,29. DOI: 10.3969/j.issn.1007-3175.2021.11.004. |
[7] |
任斌, 李嗣, 金哲, 等. ±500 kV直流输电系统共用接地极极址检修方式研究 [J]. 电工技术, 2018(8): 56-58. DOI: 10.3969/j.issn.1002-1388.2018.08.023.
REN B, LI S, JIN Z, et al. Research on maintenance mode for common earth electrode site in ±500 kV DC transmission system [J]. Electric engineering, 2018(8): 56-58. DOI: 10.3969/j.issn.1002-1388.2018.08.023. |
[8] |
李瑞显, 胡上茂, 罗炜, 等. 鱼龙岭共用接地极线路检修对换流站内变压器及人身安全的影响 [J]. 南方电网技术, 2019, 13(7): 58-63. DOI: 10.13648/j.cnki.issn1674-0629.2019.07.008.
LI R X, HU S M, LUO W, et al. Influence of Yulongling common grounding electrode line maintenance on transformers and personal safety in converter station [J]. Southern power system technology, 2019, 13(7): 58-63. DOI: 10.13648/j.cnki.issn1674-0629.2019.07.008. |
[9] |
曾连生. 金沙江一期UHVDC工程三换流站共用接地极的研究 [J]. 电力建设, 2007, 28(9): 8-12. DOI: 10.3969/j.issn.1000-7229.2007.09.003.
ZENG L S. Research on common earth electrode by three converter stations in Jinsha River UHVDC phase I project [J]. Electric power construction, 2007, 28(9): 8-12. DOI: 10.3969/j.issn.1000-7229.2007.09.003. |
[10] |
李坤泉, 李瑞芳, 杜浩, 等. 超高压直流输电线路共用接地极电气特性研究 [J]. 电工技术, 2021(16): 124-128. DOI: 10.19768/j.cnki.dgjs.2021.16.044.
LI K Q, LI R F, DU H, et al. Research on characteristics of common grounding electrode in EHVDC transmission lines [J]. Electric engineering, 2021(16): 124-128. DOI: 10.19768/j.cnki.dgjs.2021.16.044. |
[11] |
王蒙, 陈浩. 同塔双回直流共用接地极对单极金属与单极大地回线方式转换影响研究 [J]. 电力与能源, 2016, 37(4): 438-441.
WANG M, CHEN H. Effects of shared grounding electrode with double circuit lines on the same tower on the conversion between unipolar metal loop and unipolar earth loop [J]. Power & energy, 2016, 37(4): 438-441. |
[12] |
张涛, 谈小瑞, 黄悦华. 特高压直流共用接地极的暂态温升分析 [J]. 高电压技术, 2015, 41(11): 3672-3678. DOI: 10.13336/j.1003-6520.hve.2015.11.021.
ZHANG T, TAN X R, HUANG Y H. Analysis on transient temperature rise of UHVDC common grounding electrode [J]. High voltage engineering, 2015, 41(11): 3672-3678. DOI: 10.13336/j.1003-6520.hve.2015.11.021. |
[13] |
孙冰, 罗忠游, 于永军, 等. ± 1100 kV昌吉换流站与±800 kV天山换流站共同作用的直流偏磁问题研究 [J]. 高压电器, 2020, 56(8): 121-127. DOI: 10.13296/j.1001-1609.hva.2020.08.019.
SUN B, LUO Z Y, YU Y J, et al. Study on the DC magnetic bias of the ± 1100 kV Changji converter station and the ±800 kV Tianshan converter station [J]. High voltage apparatus, 2020, 56(8): 121-127. DOI: 10.13296/j.1001-1609.hva.2020.08.019. |
[14] |
陈颖. 水电站接地网暂态特性及其评估技术研究 [D]. 成都: 西南交通大学, 2017.
CHEN Y. Study on transient characteristics and evaluation technology of grounding grid of hydropower station [D]. Chengdu: Southwest Jiaotong University, 2017. |
[15] |
张振军. 用冲击电流法测量接地网阻抗系统的设计 [D]. 成都: 西华大学, 2008.
ZHANG Z J. Impact of current measurement by grounding impedance network system design [D]. Chengdu: Xihua University, 2008. |
[16] |
张富春, 郭婷, 黎晓辰, 等. ±800 kV与±500 kV换流站共用接地极时入地电流对极址附近电位分布的影响 [J]. 电力建设, 2014, 35(7): 115-120. DOI: 10.3969/j.issn.1000-7229.2014.07.020.
ZHANG F C, GUO T, LI X C, et al. Influence of ground-return current of ±800 kV and ±500 kV converter stations sharing a common grounding electrode on potential distribution [J]. Electric power construction, 2014, 35(7): 115-120. DOI: 10.3969/j.issn.1000-7229.2014.07.020. |
[17] |
孔志达. 独立接地极改造为共用接地极方案研究 [J]. 南方能源建设, 2015, 2(3): 112-117. DOI: 10.16516/j.gedi.issn2095-8676.2015.03.022.
KONG Z D. Research on the plan of independent earth electrode reconstructed to common earth electrode [J]. Southern energy construction, 2015, 2(3): 112-117. DOI: 10.16516/j.gedi.issn2095-8676.2015.03.022. |
[18] |
徐攀腾, 朱博, 喻文翔, 等. 乌东德与滇西北共用接地极线对直流输电系统影响研究 [J]. 电工技术, 2022(7): 49-53. DOI: 10.19768/j.cnki.dgjs.2022.07.014.
XU P T, ZHU B, YU W X, et al. Research on the influence of the common ground electrode line between Wudongde and northwest Yunnan on the HVDC transmission system [J]. Electric engineering, 2022(7): 49-53. DOI: 10.19768/j.cnki.dgjs.2022.07.014. |
[19] |
熊奇, 王沐雪, 黄浩, 等. 复杂地质情况下接地极土壤模型建立及研究 [J]. 中国电机工程学报, 2020, 40(7): 2269-2277. DOI: 10.13334/j.0258-8013.pcsee.182115.
XIONG Q, WANG M X, HUANG H, et al. Establishment of earth model for HVDC earth electrode in complicated terrain [J]. Proceedings of the CSEE, 2020, 40(7): 2269-2277. DOI: 10.13334/j.0258-8013.pcsee.182115. |
[20] |
卢毓欣, 赵晓斌, 李岩, 等. 共用接地极直流输电工程运行方式转换过程中换流站地网分流的影响及解决方案 [J]. 南方电网技术, 2022, 16(2): 103-110. DOI: 10.13648/j.cnki.issn1674-0629.2022.02.014. |