[1] 潘军. 1 000 MW超超临界机组技术发展的探讨 [J]. 电力勘测设计,2014(3): 32-35.

PAN J. Discussions on technique development of 1 000 MW ultra-supercritical units [J]. Electric Power Survey & Design,2014(3): 32-35.
[2] 黄迪南. 以技术创新引领一代高效洁净燃煤发电装备的开发 [J]. 华东电力,2014,42(1): 6-11.

HUANG D N. Development of new efficient clean coal-fired power generation equipment led by technology innovation [J]. East China Electric Power,2014,42(1): 6-11.
[3] 张晓鲁. 关于加快发展我国先进超超临界燃煤发电技术的战略思考 [J]. 中国工程科学,2013,15(4): 91-95.

ZHANG X L. Some consideration about the future development strategy of advanced ultra supercritical coal-fired power generation technology [J]. Engineering Science,2013,15(4): 91-95.
[4] 迟成宇,于鸿垚,谢锡善. 世界700 ℃等级先进超超临界电站关键高温材料 [J]. 世界钢铁,2013,13(2): 42-59+63.

CHI C Y, YU H Y, XIE X S. Critical high temperature materials for 700 ℃ A-USC power plants [J]. World Iron & Steel,2013,13(2): 42-59+63.
[5] 王起江,洪杰,徐松乾,等. 超超临界电站锅炉用关键材料 [J]. 北京科技大学学报,2012,34(增刊1): 26-33.

WANG Q J, HONG J, XU S Q,et al. Key materials used in ultra-supercritical power station boilers [J]. Journal of University of Science and Technology Beijing,2012,34(Supp.1): 26-33.
[6] 刘入维,肖平,钟犁,等. 700 ℃超超临界燃煤发电技术研究现状 [J]. 热力发电,2017,46(9): 1-7+23.

LIU R W, XIAO P, ZHONG L,et al. Research progress of advanced 700 ℃ ultra-supercritical coal-fired power generation technology [J]. Thermal Power Generation,2017,46(9): 1-7+23.
[7] 阳光,陈仁杰,朱佳琪. 1 000 MW超超临界二次再热燃煤发电示范工程总体设计方案 [J]. 中国电力,2017,50(6): 12-16.

YANG G, CHEN R J, ZHU J Q. General design of 1 000 MW ultra-supercritical double-reheat demonstration power plant [J]. Electric Power,2017,50(6): 12-16.
[8] 刘正东,程世长,包汉生,等. 蒸汽温度超超临界火电机组用钢及制备方法:CN103045962A[P]. 2013-04-17.
[9] 电力规划设计总院.关于报送650 ℃超超临界燃煤发电技术可行性研讨会会议纪要的函:电规发电[2016]224号[EB]. (2016-05-27)[2018-05-10].
[10] 刘正东,包汉生,徐松乾,等. 用于超600 ℃蒸汽参数超超临界火电机组的新型马氏体G115耐热刚及其钢管研制[C]// 2015年全国高品质特殊钢生产技术交流研讨会,苏州:中国金属学会,2015:26-32.
[11] 凌芳,霍沛强,邓成刚,等. 1 000 MW等级湿冷机组回热级数优化研究 [J]. 南方能源建设,2014,1(1): 45-49.

LING F, HUO P Q, DENG C G,et al. Optimization of regenerative stage numbers for 1 000 MW wet cooling units [J]. Southern Energy Construction,2014,1(1): 45-49.
[12] The American Society of Mechanical Engineers. Code cases 2015 ASME boiler and pressure vessel code:ASME BPVC.CC.BPV-2015[S]. New York:The American Society of Mechanical Engineers,2015.
[13] 陈昱萌. 超超临界锅炉运行诊断及NOx减排调整试验 [J]. 广东电力,2017,30(5): 21-24+62.

CHEN Y M. Operation diagnosis on ultra-supercritical boiler and adjustment experiment on NOx emission reduction[J]. Guangdong Electric Power,2017,30(5): 21-24+62.
[14] 于鸿垚,董建新,谢锡善. 新型奥氏体耐热钢HR3C的研究进展 [J]. 世界钢铁,2010,10(2): 42-49+61.

YU H Y, DONG J X, XIE X S. Research development of new austenitic heat-resistant steel HR3C [J]. World Iron & Steel,2010,10(2): 42-49+61.
[15] 张建强,郭嘉琳,李太江,等. 12Cr18Ni12Ti/12Cr1MoV异种耐热钢焊接接头蠕变数值模拟 [J]. 广东电力,2016,29(7): 1-4+28.

ZHANG J Q, GUO J L, LI T J,et al. Numerical simulation on interfacial creep of dissimilar welded joint between 12Cr18Ni12Ti and 12Cr1MoV heat-resistant steel[J]. Guangdong Electric Power,2016,29(7): 1-4+28.
[16] 中华人民共和国国家质量监督检验检疫总局. 锅炉安全技术监察规程:TSG G0001—2012 [S]. 北京:新华出版社,2012.
[17] 中华人民共和国住房和城乡建设部,中华人民共和国国家质量监督检验检疫总局.电厂动力管道设计规范:GB 50764—2012 [S]. 北京:中国计划出版社,2012.
[18] 上海电气集团股份有限公司. 630 ℃锅炉总体方案介绍[R]. 上海:上海电气集团股份有限公司,2016.
[19] 上海电气集团股份有限公司. 630 ℃汽轮机总体方案介绍[R]. 上海:上海电气集团股份有限公司,2016.
[20] 邓成刚,郑军,邹罗明,等. 蛇形管高压加热器用于1 000 MW二次再热机组的可行性分析 [J]. 南方能源建设,2017,4(1): 44-48.

DENG C G, ZHENG J, ZOU L M,et al. Feasibility analysis on the application of hign pressure serpentine heater in 1 000 MW coal-fired power plant with double re-heating cycles [J]. Southern Energy Construction,2017,4(1): 44-48.
[21] 南京高精传动设备制造集团有限公司.南高齿康驱(CONTRON)-高速行星齿轮调速系统亮相欧洲POWER-GEN展[EB/OL]. (2017-07-24)[2018-05-10]. http://news.bjx.com.cn/html/20170724/838974.shtml.