[1] ELIMELECH M, PHILLIP W A. The future of seawater desalination: energy, technology, and the environment [J]. Science, 2011, 333(6043): 712-717. DOI:  10.1126/science.1200488.
[2] SCHIERMEIER Q. Water: purification with a pinch of salt [J]. Nature, 2008, 452(7185): 260-261. DOI:  10.1038/452260a.
[3] RODELL M, FAMIGLIETTI J S, WIESE D N, et al. Emerging trends in global freshwater availability [J]. Nature, 2018, 557(7707): 651-659. DOI:  10.1038/s41586-018-0123-1.
[4] BEH E S, BENEDICT M A, DESAI D, et al. A redox-shuttled electrochemical method for energy-efficient separation of salt from water [J]. ACS sustainable chemistry & engineering, 2019, 7(15): 13411-13417. DOI:  10.1021/acssuschemeng.9b02720.
[5] KHAWAJI A D, KUTUBKHANAH I K, WIE J M. Advances in seawater desalination technologies [J]. Desalination, 2008, 221(1/3): 47-69. DOI:  10.1016/j.desal.2007.01.067.
[6] ZHAO F, GUO Y H, ZHOU X Y, et al. Materials for solar-powered water evaporation [J]. Nature reviews materials, 2020, 5(5): 388-401. DOI:  10.1038/s41578-020-0182-4.
[7] CHEN C J, KUANG Y D, HU L B. Challenges and opportunities for solar evaporation [J]. Joule, 2019, 3(3): 683-718. DOI:  10.1016/j.joule.2018.12.023.
[8] GAO M M, ZHU L L, PEH C K, et al. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production [J]. Energy & environmental science, 2019, 12(3): 841-864. DOI:  10.1039/C8EE01146J.
[9] DAO V D, VU N H, YUN S N. Recent advances and challenges for solar-driven water evaporation system toward applications [J]. Nano energy, 2020, 68: 104324. DOI:  10.1016/j.nanoen.2019.104324.
[10] 邱肖盼,席玉林,朱景帅. 全光谱碳基陶瓷纤维及其在海水淡化中的应用 [J]. 南方能源建设, 2024, 11(2): 198-207. DOI:  10.16516/j.ceec.2024.2.20.

QIU X P, XI Y L, ZHU J S. Full-spectrum carbon-based ceramic fibers and their application in seawater desalination [J]. Southern energy construction, 2024, 11(2): 198-207. DOI:  10.16516/j.ceec.2024.2.20.
[11] SONG Y, XU N, LIU G L, et al. High-yield solar-driven atmospheric water harvesting of metal-organic-framework-derived nanoporous carbon with fast-diffusion water channels [J]. Nature nanotechnology, 2022, 17(8): 857-863. DOI:  10.1038/s41565-022-01135-y.
[12] LI C X, CAO S J, LUTZKI J, et al. A covalent organic framework/graphene dual-region hydrogel for enhanced solar-driven water generation [J]. Journal of the American chemical society, 2022, 144(7): 3083-3090. DOI:  10.1021/jacs.1c11689.
[13] YAN X L, LYU S Z, XU X Q, et al. Superhydrophilic 2D covalent organic frameworks as broadband absorbers for efficient solar steam generation [J]. Angewandte chemie international edition, 2022, 61(19): e202201900. DOI: 10.1002/anie.20220 1900.
[14] SHEN M H, ZHAO X P, HAN L, et al. Developing flexible quinacridone-derivatives-based photothermal evaporaters for solar steam and thermoelectric power generation [J]. Chemistry a European journal, 2022, 28(20): e202104137. DOI:  10.1002/chem.202104137.
[15] CHEN G Y, SUN J M, PENG Q, et al. Biradical-featured stable organic-small-molecule photothermal materials for highly efficient solar-driven water evaporation [J]. Advanced materials, 2020, 32(29): 1908537. DOI:  10.1002/adma.201908537.
[16] HAN X, WANG Z Y, SHEN M H, et al. A highly efficient organic solar energy-absorbing material based on phthalocyanine derivative for integrated water evaporation and thermoelectric power generation application [J]. Journal of materials chemistry A, 2021, 9(43): 24452-24459. DOI:  10.1039/D1TA07519E.
[17] LIU X C, HE B, ANDERSON C L, et al. Para-azaquinodimethane: a compact quinodimethane variant as an ambient stable building block for high-performance low band gap polymers [J]. Journal of the American chemical society, 2017, 139(24): 8355-8363. DOI:  10.1021/jacs.7b04031.
[18] GUO B, SHENG Z H, HU D H, et al. Molecular engineering of conjugated polymers for biocompatible organic nanoparticles with highly efficient photoacoustic and photothermal performance in cancer theranostics [J]. ACS nano, 2017, 11(10): 10124-10134. DOI:  10.1021/acsnano.7b04685.
[19] LI Y D, LI L, WU Y, et al. A review on the origin of synthetic metal radical: singlet open-shell radical ground state? [J]. The journal of physical chemistry C, 2017, 121(15): 8579-8588. DOI:  10.1021/acs.jpcc.6b12936.
[20] CUI Y Y, LIU J, LI Z Q, et al. Donor-acceptor-type organic-small-molecule-based solar-energy-absorbing material for highly efficient water evaporation and thermoelectric power generation [J]. Advanced functional materials, 2021, 31(49): 2106247. DOI:  10.1002/adfm.202106247.
[21] LIU J, CUI Y Y, PAN Y Y, et al. Donor-acceptor molecule based high-performance photothermal organic material for efficient water purification and electricity generation [J]. Angewandte chemie international edition, 2022, 61(14): e202117087. DOI:  10.1002/anie.202117087.
[22] YAN C Q, BARLOW S, WANG Z H, et al. Non-fullerene acceptors for organic solar cells [J]. Nature reviews materials, 2018, 3: 18003. DOI:  10.1038/natrevmats.2018.3.
[23] WANG J Y, ZHAN X W. Fused-ring electron acceptors for photovoltaics and beyond [J]. Accounts of chemical research, 2021, 54(1): 132-143. DOI:  10.1021/acs.accounts.0c00575.
[24] LIN Y Z, WANG J Y, ZHANG Z G, et al. An electron acceptor challenging fullerenes for efficient polymer solar cells [J]. Advanced materials, 2015, 27(7): 1170-1174. DOI: 10.1002/adma. 201404317.
[25] LU B, ZHANG Z C, JIN D N, et al. A-DA'D-A fused-ring small molecule-based nanoparticles for combined photothermal and photodynamic therapy of cancer [J]. Chemical communications, 2021, 57(90): 12020-12023. DOI:  10.1039/D1CC04629B.
[26] CHENG P, LI G, ZHAN X W, et al. Next-generation organic photovoltaics based on non-fullerene acceptors [J]. Nature photonics, 2018, 12(3): 131-142. DOI: 10.1038/s41566-018-01 04-9.
[27] HU Y Y, WANG J Y, YAN C Q, et al. The multifaceted potential applications of organic photovoltaics [J]. Nature reviews materials, 2022, 7(11): 836-838. DOI: 10.1038/s41578-022-00 497-y.
[28] YUAN J, ZHANG Y Q, ZHOU L Y, et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core [J]. Joule, 2019, 3(4): 1140-1151. DOI:  10.1016/j.joule.2019.01.004.
[29] WANG Y F, PRICE M B, BOBBA R S, et al. Quasi-homojunction organic nonfullerene photovoltaics featuring fundamentals distinct from bulk heterojunctions [J]. Advanced materials, 2022, 34(50): 2206717. DOI: 10.1002/adma.202206 717.