[1] 中华人民共和国国务院. 国务院关于印发2030年前碳达峰行动方案的通知 [EB/OL]. (2021-10-26) [2024-04-01]. https://www.gov.cn/zhengce/content/2021-10/26/content_5644984.htm.

State Council of the People's Republic of China. Notice of the State Council of the People's Republic of China on printing and distributing the action plan for peaking carbon emissions before 2030 [EB/OL]. (2021-10-26) [2024-04-01]. https://www.gov.cn/zhengce/content/2021-10/26/content_5644984.htm.
[2] 李银安, 蔡诗东. 受控热核聚变研究现状 [J]. 科技导报, 1992, 10(3): 17-22.

LI Y A, CAI S D. Research on controlled fusion [J]. Science & technology review, 1992, 10(3): 17-22.
[3] OLIPHANT M L E, HARTECK P, RUTHERFORD E. Transmutation effects observed with heavy hydrogen [J]. Proceedings of the royal society A: mathematical, physical and engineering sciences, 1934, 144(853): 692-703. DOI:  10.1098/rspa.1934.0077.
[4] BETHE H, PEIERLS R. Quantum theory of the diplon [J]. Proceedings of the royal society A: mathematical, physical and engineering sciences, 1935, 148(863): 146-156. DOI:  10.1098/rspa.1935.0010.
[5] LAWSON J D. Some criteria for a power producing thermonuclear reactor [J]. Proceedings of the physical society, section B, 1957, 70(1): 6-10. DOI:  10.1088/0370-1301/70/1/303.
[6] 王龙. 磁约束等离子体实验物理 [M]. 北京: 科学出版社, 2018.

WANG L. Experimental physics of magnetic confinement plasmas [M]. Beijing: Science Press, 2018.
[7] LINDL J D, AMENDT P, BERGER R L, et al. The physics basis for ignition using indirect-drive targets on the national ignition facility [J]. Physics of plasmas, 2004, 11(2): 339-491. DOI:  10.1063/1.1578638.
[8] HAAN S W, LINDL J D, CALLAHAN D A, et al. Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility [J]. Physics of plasmas, 2011, 18(5): 051001. DOI:  10.1063/1.3592169.
[9] 陈伯伦, 杨正华, 胡昕, 等. 神光系列激光装置内爆烧蚀压缩过程测量 [J]. 强激光与粒子束, 2020, 32(9): 092010. DOI:  10.11884/HPLPB202032.200111.

CHEN B L, YANG Z H, HU X, et al. Implosion ablated convergence measurement on shenguang laser facilities [J]. High power laser and particle beams, 2020, 32(9): 092010. DOI:  10.11884/HPLPB202032.200111.
[10] 卢鹤绂. 重原子核内之潜能及其利用 [J]. 科学, 1944, 27(2): 9-23.

LU H F. The potential in the nucleus of a heavy atom and its utilization [J]. Science (China), 1944, 27(2): 9-23.
[11] 苏罡. 中国核能科技“三步走”发展战略的思考 [J]. 科技导报, 2016, 34(15): 33-41. DOI:  10.3981/j.issn.1000-7857.2016.15.002.

SU G. The "three steps development strategy" of China nuclear power science and technology [J]. Science & technology review, 2016, 34(15): 33-41. DOI:  10.3981/j.issn.1000-7857.2016.15.002.
[12] 王龙, 钱尚介, 郑春开, 等. 我国磁约束聚变研究的早期历史 [J]. 物理, 2008, 37(1): 38-41. DOI:  10.3321/j.issn:0379-4148.2008.01.006.

WANG L, QIAN S J, ZHENG C K, et al. The early history of magnetic confined fusion research in China [J]. Physics, 2008, 37(1): 38-41. DOI:  10.3321/j.issn:0379-4148.2008.01.006.
[13] LIU Y, DING X T, YANG Q W, et al. Recent advances in the HL-2A tokamak experiments [J]. Nuclear fusion, 2005, 45(10): S239-S244. DOI:  10.1088/0029-5515/45/10/S19.
[14] 刘永, 李强, HL-M研制团队. 中国环流器二号M(HL-2M)托卡马克主机研制进展 [J]. 中国核电, 2020, 13(6): 747-752.

LIU Y, LI Q, For HL-2M Development Team. The development progress of the tokamak machine for HL-2M [J]. China nuclear power, 2020, 13(6): 747-752.
[15] LI Q. The component development status of HL-2M tokamak [J]. Fusion engineering and design, 2015, 96-97: 338-342. DOI:  10.1016/j.fusengdes.2015.06.106.
[16] CHEN W, YU L M, XU M, et al. Recent advances in high-β N experiments and magnetohydrodynamic instabilities with hybrid scenarios in the HL-2A tokamak [J]. Fundamental research, 2022, 2(5): 667-673. DOI:  10.1016/j.fmre.2021.12.011.
[17] DUAN X R, XU M, ZHONG W L, et al. Progress of HL-2A experiments and HL-2M program [J]. Nuclear fusion, 2022, 62(4): 042020. DOI:  10.1088/1741-4326/ac3be6.
[18] 李建刚. 托卡马克研究的现状及发展 [J]. 物理, 2016, 45(2): 88-97. DOI:  10.7693/wl20160203.

LI J G. The status and progress of tokamak research [J]. Physics, 2016, 45(2): 88-97. DOI:  10.7693/wl20160203.
[19] 李建刚. 我国超导托卡马克的现状及发展 [J]. 中国科学院院刊, 2007, 22(5): 404-410. DOI:  10.16418/j.issn.1000-3045.2007.05.011.

LI J G. Present status and development of superconducting tokamak research in China [J]. Bulletin of Chinese academy of sciences, 2007, 22(5): 404-410. DOI:  10.16418/j.issn.1000-3045.2007.05.011.
[20] 王辉辉. 磁约束聚变堆托卡马克误差场研究进展综述 [J]. 南方能源建设, 2022, 9(2): 1-18. DOI:  10.16516/j.gedi.issn2095-8676.2022.02.001.

WANG H H. The progress of error field investigation in magnetically confined fusion tokamak reactor [J]. Southern energy construction, 2022, 9(2): 1-18. DOI:  10.16516/j.gedi.issn2095-8676.2022.02.001.
[21] SONG Y T, ZOU X L, GONG X Z, et al. Realization of thousand-second improved confinement plasma with super I-mode in tokamak EAST [J]. Science advance, 2023, 9(1): eabq5273. DOI:  10.1126/SCIADV.ABQ5273.
[22] 傅培松, 曾钢, 卢宇, 等. 科研项目采购探讨——以聚变堆主机关键系统综合研究设施项目为例 [J]. 科技管理研究, 2020, 40(8): 223-227. DOI:  10.3969/j.issn.1000-7695.2020.8.028.

FU P S, ZENG G, LU Y, et al. Probe into procurement of scientific research projects: a case study of comprehensive research facilities in support of CFETR [J]. Science and technology management research, 2020, 40(8): 223-227. DOI:  10.3969/j.issn.1000-7695.2020.8.028.
[23] 黄捷, 李沫杉, 覃程, 等. 中国首台准环对称仿星器中离子温度梯度模的模拟研究 [J]. 物理学报, 2022, 71(18): 185202. DOI:  10.7498/aps.71.20220729.

HUANG J, LI M S, QIN C, et al. Simulation of ion temperature gradient mode in Chinese first quasi-axisymmetric stellarator [J]. Acta physica sinica, 2022, 71(18): 185202. DOI:  10.7498/aps.71.20220729.
[24] 苏祥, 王先驱, 符添, 等. CFQS准环对称仿星器低β等离子体中三维磁岛的抑制机制 [J]. 物理学报, 2023, 72(21): 215205. DOI:  10.7498/aps.72.20230546.

SU X, WANG X Q, FU T, et al. Suppression mechanism of equilibrium magnetic islands in CFQS low-β plasma [J]. Acta physica sinica, 2023, 72(21): 215205. DOI:  10.7498/aps.72.20230546.
[25] PENG Y K M, STRICKLER D J. Features of spherical torus plasmas [J]. Nuclear fusion, 1986, 26(6): 769-777. DOI:  10.1088/0029-5515/26/6/005.
[26] PENG Y K M. The physics of spherical torus plasmas [J]. Physics of plasmas, 2000, 7(5): 1681-1692. DOI:  10.1063/1.874048.
[27] SYKES A, COSTLEY A E, WINDSOR C G, et al. Compact fusion energy based on the spherical tokamak [J]. Nuclear fusion, 2018, 58(1): 016039. DOI:  10.1088/1741-4326/aa8c8d.
[28] GAO Z. Compact magnetic confinement fusion: spherical torus and compact torus [J]. Matter and radiation at extremes, 2016, 1(3): 153-162. DOI:  10.1016/j.mre.2016.05.004.
[29] LIU W B, WANG S Z, WANG B B, et al. Quasi-coherent mode in core plasma of SUNIST spherical tokamak [J]. Plasma science and technology, 2023, 25(1): 015103. DOI:  10.1088/2058-6272/ac85a3.
[30] XIE H Q, TAN Y, KE R, et al. Analysis of the gas puffing performance for improving the repeatability of Ohmic discharges in the SUNIST spherical tokamak [J]. Plasma science and technology, 2014, 16(8): 732-737. DOI:  10.1088/1009-0630/16/8/03.
[31] 郑金星, 宋云涛, 杨庆喜, 等. KTX反场箍缩装置纵场线圈结构设计与电磁分析 [J]. 原子能科学技术, 2013, 47(11): 2166-2171. DOI:  10.7538/yzk.2013.47.11.2166.

ZHENG J X, SONG Y T, YANG Q X, et al. Structure design and electromagnetic analysis of KTX TF coils [J]. Atomic energy science and technology, 2013, 47(11): 2166-2171. DOI:  10.7538/yzk.2013.47.11.2166.
[32] BODIN H A B, NEWTON A A. Reversed-field-pinch research [J]. Nuclear fusion, 1980, 20(10): 1255-1324. DOI:  10.1088/0029-5515/20/10/006.
[33] CHEN C, LAN T, XIAO C J, et al. Development of a compact torus injection system for the Keda Torus eXperiment [J]. Plasma science and technology, 2022, 24(4): 045102. DOI:  10.1088/2058-6272/ac4e75.
[34] 孙玄, 刘明, 谢锦林, 等. KMAX实验装置中的重点研究问题 [J]. 中国科学技术大学学报, 2014, 44(5): 374-381. DOI:  10.3969/j.issn.0253-2778.2014.05.003.

SUN X, LIU M, XIE J L, et al. Research activities in Keda axisymmetric tandem mirror experiment [J]. Journal of university of science and technology of China, 2014, 44(5): 374-381. DOI:  10.3969/j.issn.0253-2778.2014.05.003.
[35] 孙长江. 多种等离子体模拟直线装置(MPS-LD)的物理设计 [D]. 大连: 大连理工大学, 2021. DOI:  10.26991/d.cnki.gdllu.2021.001901.

SUN C J. Physical design of multiple plasma simulation linear device (MPS-LD) [D]. Dalian: Dalian University of Technology, 2021. DOI:  10.26991/d.cnki.gdllu.2021.001901.
[36] LU G H, CHENG L, ARSHAD K, et al. Development and optimization of STEP—a linear plasma device for plasma-material interaction studies [J]. Fusion science and technology, 2017, 71(2): 177-186. DOI:  10.13182/FST16-115.
[37] YIN H, WANG J, GUO W G, et al. Recent studies of tungsten-based plasma-facing materials in the linear plasma device STEP [J]. Tungsten, 2019, 1(2): 132-140. DOI:  10.1007/s42864-019-00004-x.
[38] 吴一帆, 余羿, 肖池阶, 等. 北京大学等离子体联合实验装置 [C]//安徽省第四届(2016年)“卓凌杯”真空科技青年创新大赛暨学术研讨会论文集, 安庆, 中国, 2016年10月21日. 安庆: 安徽省真空学会, 2016: 73-79.

WU Y F, YU Y, XIAO C J, et al. Peking University plasma joint experimental facility [C]//Proceedings of the 4th (2016) "Zhuoling Cup" Vacuum Science and Technology Youth Innovation Competition and Academic Seminar in Anhui Province, Anqing, China, October 21, 2016. Anqing: Anhui Vacuum Society, 2016: 73-79.
[39] HASEGAWA A. A dipole field fusion reactor [J]. Comments on plasma physics and controlled fusion, 1987, 11(3): 147-151.
[40] HASEGAWA A, CHEN L, MAUEL M E. A D-3He fusion reactor based on a dipole magnetic field [J]. Nuclear fusion, 1990, 30(11): 2405-2413. DOI:  10.1088/0029-5515/30/11/018.
[41] 刘腾, 张国书, 杜俊杰, 等. 天环一号偶极场磁约束实验装置悬浮线圈的初步设计及分析 [J]. 核聚变与等离子体物理, 2022, 42(3): 271-278. DOI:  10.16568/j.0254-6086.202203001.

LIU T, ZHANG G S, DU J J, et al. Preliminary design and analysis of floating coil for dipole field magnetic confinement experimental device, China Astro-Torus No. 1 [J]. Nuclear fusion and plasma physics, 2022, 42(3): 271-278. DOI:  10.16568/j.0254-6086.202203001.
[42] 罗德隆, 宋云涛, 段旭如, 等. 中国ITER计划采购包进展 [J]. 中国科学: 物理学 力学 天文学, 2019, 49(4): 045203. DOI:  10.1360/SSPMA2018-00285.

LUO D L, SONG Y T, DUAN X R, et al. Progress of ITER procurement in China [J]. Scientia sinica physica, mechanica & astronomica, 2019, 49(4): 045203. DOI:  10.1360/SSPMA2018-00285.
[43] 王龙. 普林斯顿TFTR装置氘氚聚变反应创新纪录 [J]. 物理, 1994, 23(10): 641.

WANG L. Innovation record of deuterium tritium fusion reaction at Princeton TFTR facility [J]. Physics, 1994, 23(10): 641.
[44] 伍浩松, 张焰. 欧洲联合环聚变功率创世界新记录 [J]. 国外核新闻, 1998(1): 17.

WU H S, ZHANG Y. European union fusion power set a world record [J]. Foreign nuclear news, 1998(1): 17.
[45] 伍浩松, 张焰. 欧洲联合环在最后一次实验中创聚变能量输出记录 [J]. 国外核新闻, 2024(3): 12.

WU H S, ZHANG Y. The European union set a record for fusion energy output in the last experiment [J]. Foreign nuclear news, 2024(3): 12.
[46] 何开辉, 罗德隆, 王敏, 等. ITER计划国际大科学工程工作进展 [J]. 中国核电, 2020, 13(6): 736-740.

HE K H, LUO D L, WANG M, et al. The latest progress of ITER international mega-science project [J]. China nuclear power, 2020, 13(6): 736-740.
[47] 万元熙. 磁约束核聚变进展和国际热核聚变实验堆ITER [C]//第十六届全国原子与分子物理学术会议论文摘要集, 吉安, 中国, 2011年8月9日. 吉安: 中国物理学会原子与分子物理专业委员会, 2011: 13.

WAN Y X. Advances in magnetic confinement nuclear fusion and the international thermonuclear experimental reactor (ITER) [C]//Abstracts of the 16th National Conference on Atomic and Molecular Physics, Ji'an, China, August 9, 2011. Ji'an: Atomic and Molecular Physics Committee of the Chinese Physical Society, 2011: 13.
[48] 刘永, 李强, 陈伟. 磁约束核聚变能研究进展、挑战与展望 [J]. 科学通报, 2024, 69(3): 346-355. DOI:  10.1360/TB-2023-0370.

LIU Y, LI Q, CHEN W. Progress, challenge, and perspective of the development of magnetic confinement fusion energy [J]. Chinese science bulletin, 2024, 69(3): 346-355. DOI:  10.1360/TB-2023-0370.
[49] ABDOU M, MORLEY N B, SMOLENTSEV S, et al. Blanket/first wall challenges and required R&D on the pathway to DEMO [J]. Fusion engineering and design, 2015, 100: 2-43. DOI:  10.1016/j.fusengdes.2015.07.021.
[50] 王晓宇, 段旭如, 赵奉超, 等. 中国ITER氦冷固态增殖剂实验包层系统设计研发进展 [J]. 中国核电, 2020, 13(6): 753-758.

WANG X Y, DUAN X R, ZHAO F C, et al. Development progress of Chinese Helium cooled ceramic breeder test blanket system [J]. China nuclear power, 2020, 13(6): 753-758.
[51] PEARSON R J, ANTONIAZZI A B, NUTTALL W J. Tritium supply and use: a key issue for the development of nuclear fusion energy [J]. Fusion engineering and design, 2018, 136: 1140-1148. DOI:  10.1016/j.fusengdes.2018.04.090.