[1] 陆子凯, 简翔浩, 张明瀚. 多端柔性直流配电网的可靠性和经济性评估 [J]. 南方能源建设, 2020, 7(4): 67-74. DOI:  10.16516/j.gedi.issn2095-8676.2020.04.010.

LU Z K, JIAN X H, ZHANG M H. Reliability and economy assessment of multi-terminal flexible DC distribution network [J]. Southern energy construction, 2020, 7(4): 67-74. DOI:  10.16516/j.gedi.issn2095-8676.2020.04.010.
[2] 张明瀚, 简翔浩, 陆子凯. 珠海“互联网+”柔性直流配电网换流站设计方案 [J]. 南方能源建设, 2020, 7(1): 95-100. DOI:  10.16516/j.gedi.issn2095-8676.2020.01.015.

ZHANG M H, JIAN X H, LU Z K. Design of converter stations of Zhuhai“Internet +” flexible DC distribution network [J]. Southern energy construction, 2020, 7(1): 95-100. DOI:  10.16516/j.gedi.issn2095-8676.2020.01.015.
[3] 刘生. 大容量海上柔性直流换流站紧凑型布置研究 [J]. 南方能源建设, 2021, 8(1): 45-50. DOI:  10.16516/j.gedi.issn2095-8676.2021.01.006.

LIU S. Research on compact layout of large capacity offshore flexible DC converter station [J]. Southern energy construction, 2021, 8(1): 45-50. DOI:  10.16516/j.gedi.issn2095-8676.2021.01.006.
[4] 金阳忻, 高一波. 中压直流换流站最优电流控制算法研究 [J]. 电网技术, 2021, 45(5): 1773-1781. DOI:  10.13335/j.1000-3673.pst.2020.0470.

JIN Y X, GAO Y B. Optimal current control algorithm in medium voltage DC converters [J]. Power system technology, 2021, 45(5): 1773-1781. DOI:  10.13335/j.1000-3673.pst.2020.0470.
[5] 彭冠炎. 柔性直流换流站站级控制系统交流联络状态监测研究 [J]. 南方能源建设, 2016, 3(增刊1): 103-106. DOI:  10.16516/j.gedi.issn2095-8676.2016.S1.022.

PENG G Y. Research on AC tie line status monitor in station control system of VSC-HVDC station [J]. Southern energy construction, 2016, 3(Suppl. 1): 103-106. DOI:  10.16516/j.gedi.issn2095-8676.2016.S1.022.
[6] 陈继开, 王永浩, 李浩茹, 等. 交流不对称多端柔直受端换流站交互影响分析与抑制方法 [J]. 电网技术, 2022, 46(6): 2366-2374. DOI:  10.13335/j.1000-3673.pst.2021.1440.

CHEN J K, WANG Y H, LI H R, et al. Interaction analysis and suppression of AC asymmetric MMC-MTDC receiving converter station [J]. Power system technology, 2022, 46(6): 2366-2374. DOI:  10.13335/j.1000-3673.pst.2021.1440.
[7] 孔明, 汤广福, 贺之渊, 等. 不对称交流电网下MMC-HVDC输电系统的控制策略 [J]. 中国电机工程学报, 2013, 33(28): 41-49. DOI:  10.13334/j.0258-8013.pcsee.2013.28.011.

KONG M, TANG G F, HE Z Y, et al. A control strategy for modular multilevel converter based HVDC of unbalanced AC systems [J]. Proceedings of the CSEE, 2013, 33(28): 41-49. DOI:  10.13334/j.0258-8013.pcsee.2013.28.011.
[8] 张璐, 唐巍, 卢莹, 等. 面向新型源荷接入的交直流混合配电网关键技术研究综述 [J]. 供用电, 2020, 37(10): 3-9,21. DOI:  10.19421/j.cnki.1006-6357.2020.10.001.

ZHANG L, TANG W, LU Y, et al. Overview of hybrid AC/DC distribution network key technologies facing novel source and load integration [J]. Distribution anf utilization, 2020, 37(10): 3-9,21. DOI:  10.19421/j.cnki.1006-6357.2020.10.001.
[9] 郝为瀚. 海上平台柔性直流换流站工程应用方案研究 [J]. 南方能源建设, 2017, 4(1): 66-70. DOI:  10.16516/j.gedi.issn2095-8676.2017.01.012.

HAO W H. Research on VSC-HVDC converter station application on offshore platform [J]. Southern energy construction, 2017, 4(1): 66-70. DOI:  10.16516/j.gedi.issn2095-8676.2017.01.012.
[10] 徐政, 薛英林, 张哲任. 大容量架空线柔性直流输电关键技术及前景展望 [J]. 中国电机工程学报, 2014, 34(29): 5051-5062. DOI:  10.13334/j.0258-8013.pcsee.2014.29.006.

XU Z, XUE Y L, ZHANG Z R. VSC-HVDC technology suitable for bulk power overhead line transmission [J]. Proceedings of the CSEE, 2014, 34(29): 5051-5062. DOI:  10.13334/j.0258-8013.pcsee.2014.29.006.
[11] 徐政, 屠卿瑞, 裘鹏. 从2010国际大电网会议看直流输电技术的发展方向 [J]. 高电压技术, 2010, 36(12): 3070-3077. DOI:  10.13336/j.1003-6520.hve.2010.12.030.

XU Z,TU Q R, QIU P. New trends in HVDC technology viewed through CIGRE 2010 [J]. High voltage engineering, 2010, 36(12): 3070-3077. DOI:  10.13336/j.1003-6520.hve.2010.12.030.
[12] 唐庚, 徐政, 薛英林. LCC-MMC混合高压直流输电系统 [J]. 电工技术学报, 2013, 28(10): 301-310. DOI:  10.19595/j.cnki.1000-6753.tces.2013.10.036.

TANG G, XU Z, XUE Y L. A LCC-MMC hybrid HVDC transmission system [J]. Transactions of China electrotechnical society, 2013, 28(10): 301-310. DOI:  10.19595/j.cnki.1000-6753.tces.2013.10.036.
[13] 薛浩岩, 张天慈, 王心远, 等. 海上风电柔性直流输电系统故障穿越安全研究 [J]. 电力安全技术, 2023, 25(1): 32-37. DOI:  10.3969/j.issn.1008-6226.2023.01.010.

XUE H Y, ZHANG T C, WANG X Y, et al. Study on fault traversal safety of offshore wind power flexible DC transmission system [J]. Electric safety technology, 2023, 25(1): 32-37. DOI:  10.3969/j.issn.1008-6226.2023.01.010.
[14] 饶宏, 周月宾, 李巍巍, 等. 柔性直流输电技术的工程应用和发展展望 [J]. 电力系统自动化, 2023, 47(1): 1-11. DOI:  10.7500/AEPS20220330004.

RAO H, ZHOU Y B, LI W W, et al. Engineering application and development prospect of VSC-HVDC transmission technology [J]. Automation of electric power systems, 2023, 47(1): 1-11. DOI:  10.7500/AEPS20220330004.
[15] 饶宏, 黄伟煌, 郭知非, 等. 柔性直流输电技术在大电网中的应用与实践 [J]. 高电压技术, 2022, 48(9): 3347-3355. DOI:  10.13336/j.1003-6520.hve.20221020.

RAO H, HUANG W H, GUO Z F, et al. Practical experience of VSC-HVDC transmission in large grid [J]. High voltage engineering, 2022, 48(9): 3347-3355. DOI:  10.13336/j.1003-6520.hve.20221020.
[16] 赵雪. 多端柔性直流输电系统有功优化分配 [D]. 广州: 华南理工大学, 2021.

ZHAO X. Optimal active power allocation for VSC-MTDC transmission system [D]. Guangzhou: South China University of Technology, 2021.
[17] 朱劲松. 柔性直流输电技术在电力系统中的应用 [J]. 农业工程与装备, 2022, 49(6): 53-55. DOI:  10.3969/j.issn.1007-8320.2022.06.017.

ZHU J S. Application of the flexible high voltage direct current technology in power system [J]. Agricul engineering and equipment, 2022, 49(6): 53-55. DOI:  10.3969/j.issn.1007-8320.2022.06.017.
[18] 雷顺广, 束洪春, 李志民, 等. 柔性直流输电系统的桥臂功率解析 [J]. 电网技术, 2023, 47(4): 1490-1499. DOI:  10.13335/j.1000-3673.pst.2022.1359.

LEI S G, SHU H C, LI Z M, et al. Bridge arm power analysis of flexible HVDC transmission system [J]. Power system technology, 2023, 47(4): 1490-1499. DOI:  10.13335/j.1000-3673.pst.2022.1359.
[19] 孙佳怡. 基于新能源并网的柔性直流输电控制技术 [J]. 电子技术与软件工程, 2022(19): 130-133.

SUN J Y. Flexible HVDC transmission control technology based on new energy grid [J]. Electronic Technology & Software Engineering, 2022(19): 130-133.
[20] 欧东海. 大规模海上风电柔性直流输电研究 [J]. 光源与照明, 2022(9): 220-222.

OU D H. Research on large-scale offshore wind power flexible DC transmission [J]. Lamps & lighting, 2022(9): 220-222.
[21] 殷俊雨. 谈柔性直流输电技术应用、进步与期望 [C]//2022年上海工程技术与新材料论坛论文集(ETM2022), 线上会议, 2022-07-31. 2022: 4-5. DOI: 10.26914/c.cnkihy.2022.037470.

YIN J Y. Application, progress and expectation of flexible HVDC technology [C]//Proceedings of 2022 Shanghai Forum on Engineering Technology and New Materials (ETM2022), online, July 31, 2022. 2022: 4-5. DOI: 10.26914/c.cnkihy.2022.037470.
[22] 高根男, 张兰红, 陈小海. 柔性直流输电技术在海上风电中的应用研究 [J]. 自动化仪表, 2022, 43(6): 90-94,98. DOI:  10.16086/j.cnki.issn1000-0380.2021110089.

GAO G N, ZHANG L H, CHEN X H. Research on application of VSC-HVDC technology in offshore wind power [J]. Process automation instrumentation, 2022, 43(6): 90-94,98. DOI:  10.16086/j.cnki.issn1000-0380.2021110089.
[23] 李敬业. 新能源接入的多端柔性直流输电系统分布式协同优化控制策略研究 [D]. 兰州: 兰州交通大学, 2022. DOI: 10.27205/d.cnki.gltec.2022.000202.

LI J Y. Research on distributed cooperative optimal control strategy of VSC-MTDC system with renewable energy integration [D]. Lanzhou: Lanzhou Jiaotong University, 2022. DOI: 10.27205/d.cnki.gltec.2022.000202.