[1] |
周行, 李少华, 王慧, 等. 光伏耦合电解水制氢系统的建模与仿真 [J]. 南方能源建设, 2023, 10(3): 104-111. DOI: 10.16516/j.gedi.issn2095-8676.2023.03.011.
ZHOU H, LI S H, WANG H, et al. Modelling and simulation of photovoltaic coupling water electrolysis hydrogen production system [J]. Southern energy construction, 2023, 10(3): 104-111. DOI: 10.16516/j.gedi.issn2095-8676.2023.03.011. |
[2] |
韦媚媚, 项定先. 储能技术应用与发展趋势 [J]. 工业安全与环保, 2023, 49(增刊1): 4-12. DOI: 10.3969/j.issn.1001-425X.2023.z1.002.
WEI M M, XIANG D X. Application and development trend of energy storage [J]. Industrial safety and environmental protection, 2023, 49(Suppl.1): 4-12. DOI: 10.3969/j.issn.1001-425X.2023.z1.002. |
[3] |
汤匀, 岳芳, 王莉晓, 等. 全球新型储能技术发展态势分析 [J]. 全球能源互联网, 2024, 7(2): 228-240. DOI: 10.19705/j.cnki.issn2096-5125.2024.02.012.
TANG Y, YUE F, WANG L X, et al. International development trend analysis of new energy storage technologies [J]. Journal of global energy interconnection, 2024, 7(2): 228-240. DOI: 10.19705/j.cnki.issn2096-5125.2024.02.012. |
[4] |
陈海生, 李泓, 徐玉杰, 等. 2023年中国储能技术研究进展 [J]. 储能科学与技术, 2024, 13(5): 1359-1397. DOI: 10.19799/j.cnki.2095-4239.2024.0441.
CHEN H S, LI H, XU Y J, et al. Research progress on energy storage technologies of China in 2023 [J]. Energy storage science and technology, 2024, 13(5): 1359-1397. DOI: 10.19799/j.cnki.2095-4239.2024.0441. |
[5] |
ANEKE M, WANG M H. Energy storage technologies and real life applications-A state of the art review [J]. Applied energy, 2016, 179: 350-377. DOI: 10.1016/j.apenergy.2016.06.097. |
[6] |
RUOSO A C, CAETANO N R, ROCHA L A O. Storage gravitational energy for small scale industrial and residential applications [J]. Inventions, 2019, 4(4): 64. DOI: 10.3390/inventions4040064. |
[7] |
MOORE S K. The ups and downs of gravity energy storage: startups are pioneering a radical new alternative to batteries for grid storage [J]. IEEE spectrum, 2021, 58(1): 38-39. DOI: 10.1109/MSPEC.2021.9311456. |
[8] |
夏焱, 万继方, 李景翠, 等. 重力储能技术研究进展 [J]. 新能源进展, 2022, 10(3): 258-264. DOI: 10.3969/j.issn.2095-560X.2022.03.010.
XIA Y, WAN J F, LI J C, et al. Research progress of gravity energy storage technology [J]. Advances in new and renewable energy, 2022, 10(3): 258-264. DOI: 10.3969/j.issn.2095-560X.2022.03.010. |
[9] |
王粟, 肖立业, 唐文冰, 等. 新型重力储能研究综述 [J]. 储能科学与技术, 2022, 11(5): 1575-1582. DOI: 10.19799/j.cnki.2095-4239.2021.0590.
WANG S, XIAO L Y, TANG W B, et al. Review of new gravity energy storage [J]. Energy storage science and technology, 2022, 11(5): 1575-1582. DOI: 10.19799/j.cnki.2095-4239.2021.0590. |
[10] |
邱清泉, 罗晓悦, 林玉鑫, 等. 垂直式重力储能系统的研究进展和关键技术 [J]. 储能科学与技术, 2024, 13(3): 934-945. DOI: 10.19799/j.cnki.2095-4239.2023.0789.
QIU Q Q, LUO X Y, LIN Y X, et al. Research progress and key technologies in vertical gravity energy storage systems [J]. Energy storage science and technology, 2024, 13(3): 934-945. DOI: 10.19799/j.cnki.2095-4239.2023.0789. |
[11] |
TONG W X, LU Z G, CHEN W J, et al. Solid gravity energy storage: a review [J]. Journal of energy storage, 2022, 53: 105226. DOI: 10.1016/j.est.2022.105226. |
[12] |
修雅馨, 刘钦节, 付强, 等. 废弃矿井地下空间物理储能方式对比与优选 [J]. 绿色矿冶, 2024, 40(2): 6-13. DOI: 10.19610/j.cnki.cn10-1873/tf.2024.02.002.
XIU Y X, LIU Q J, FU Q, et al. Comparison and optimization of physical energy storage methods in underground space of abandoned mines [J]. Sustainable mining and metallurgy, 2024, 40(2): 6-13. DOI: 10.19610/j.cnki.cn10-1873/tf.2024.02.002. |
[13] |
张品, 姚丽英, 陈吉顺, 等. 废弃矿井重力储能现状分析及构想 [J]. 内蒙古煤炭经济, 2024(3): 9-11. DOI: 10.3969/j.issn.1008-0155.2024.03.004.
ZHANG P, YAO L Y, CHEN J S, et al. Analysis and conception of gravity energy storage in abandoned mines [J]. Inner Mongolia coal economy, 2024(3): 9-11. DOI: 10.3969/j.issn.1008-0155.2024.03.004. |
[14] |
刘志强, 宋朝阳. 闭坑矿井竖井井筒开发再利用科学探索 [J]. 煤炭科学技术, 2019, 47(1): 18-24 DOI: 10.13199/j.cnki.cst.2019.01.003.
LIU Z Q, SONG Z Y. Scientific exploration of development and reutilization of vertical shafts in closed mines [J]. Coal science and technology, 2019, 47(1): 18-24. DOI: 10.13199/j.cnki.cst.2019.01.003. |
[15] |
MORSTYN T, CHILCOTT M, MCCULLOCH M D. Gravity energy storage with suspended weights for abandoned mine shafts [J]. Applied energy, 2019, 239: 201-206. DOI: 10.1016/j.apenergy.2019.01.226. |
[16] |
杨彦群, 刘钦节, 周京军, 等. 一种用于废弃煤矿重力储能系统及布置方法: 116207869A [P]. 2023-06-02.
YANG Y Q, LIU Q J, ZHOU J J, et al. Gravity energy storage system for abandoned coal mine and arrangement method: 116207869A [P]. 2023-06-02. |
[17] |
宋立平, 董宝光, 王东军, 等. 一种基于矿井立井筒、提升、运输系统的重力储能系统: 209536772U [P]. 2019-10-25.
SONG L P, DONG B G, WANG D J, et al. Gravity energy storage system based on mine shaft erecting, lifting and transporting system: 209536772U [P]. 2019-10-25. |
[18] |
BOTHA C D, KAMPER M J. Capability study of dry gravity energy storage [J]. Journal of energy storage, 2019, 23: 159-174. DOI: 10.1016/j.est.2019.03.015. |
[19] |
DU Y, CHENG M, CHAU K T, et al. Comparison of linear primary permanent magnet Vernier machine and linear Vernier hybrid machine [J]. IEEE transactions on magnetics, 2014, 50(11): 8202604. DOI: 10.1109/TMAG.2014.2317805. |
[20] |
BOTHA C D, KAMPER M J. Linear electric machine-based gravity energy storage for wind farm integration [C]//Proceedings of 2020 International SAUPEC/RobMech/PRASA Conference, Cape Town, South Africa, January 29-31, 2020. Cape Town: IEEE, 2020: 1-6. DOI: 10.1109/SAUPEC/RobMech/PRASA48453.2020.9041100. |
[21] |
BOTHA C D, KAMPER M J, WANG R J. Design optimisation and cost analysis of linear Vernier electric machine-based gravity energy storage systems [J]. Journal of energy storage, 2021, 44: 103397. DOI: 10.1016/j.est.2021.103397. |
[22] |
鲍久圣, 曹靖雨, 阴妍, 等. 一种基于直线电机和废旧矿井的重力储能系统: 117458724A [P]. 2024-01-26.
BAO J S, CAO J Y, YIN Y, et al. Gravity energy storage system based on linear motor and waste mine: 117458724A [P]. 2024-01-26. |
[23] |
MUGYEMA M, RABADIA M M, BOTHA C D, et al. Design and control of a linear electric machine based gravity energy storage system [C]//Proceedings of the 30th Southern African Universities Power Engineering Conference, Durban, South Africa, January 25-27, 2022. Durban: IEEE, 2022: 1-8. DOI: 10.1109/SAUPEC55179.2022.9730745. |
[24] |
MUGYEMA M, KAMPER M J, WANG R J. Design and evaluation of a linear permanent magnet flux switching machine for use in dry gravity energy storage [C]//Proceedings of 2023 IEEE International Magnetic Conference, Sendai, Japan, May 15-19, 2023. Sendai: IEEE, 2023: 1-5. DOI: 10.1109/INTERMAG50591.2023.10265013. |
[25] |
YAN W J, YANG H W, XIN J, et al. Linear motor topology study and prospect of abandoned mine-type/mountain gravity energy storage [C]//Proceedings of the 4th International Conference on Power Engineering, Macau, China, December 11-13, 2023. Macau: IEEE, 2023: 133-138. DOI: 10.1109/ICPE59729.2023.10468747. |
[26] |
ALMORAYA A A, BAKER N J, SMITH K J, et al. Development of a double-sided consequent pole linear Vernier hybrid permanent-magnet machine for wave energy converters [C]//Proceedings of 2017 IEEE International Electric Machines and Drives Conference, Miami, FL, USA, May 21-24, 2017. Miami: IEEE, 2017: 1-7. DOI: 10.1109/IEMDC.2017.8002157. |
[27] |
MUGYEMA M, KAMPER M J, WANG R J. Design optimization of a linear wound field flux switching machine for dry gravity energy storage [C]//Proceedings of the 14th International Symposium on Linear Drivers for Industry Applications, Hannover, Germany, June 28-30, 2023. Hannover: IEEE, 2023: 1-5. DOI: 10.1109/LDIA59564.2023.10297529. |
[28] |
孙海涛, 陈燕, 常晓敏, 等. 永磁式开关磁阻直线电机的设计及分析 [J]. 太原理工大学学报, 2017, 48(2): 232-236. DOI: 10.16355/j.cnki.issn1007-9432tyut.2017.02.016.
SUN H T, CHEN Y, CHANG X M, et al. Design and analysis of a type of linear permanent magnet switch reluctance motor [J]. Journal of Taiyuan University of Technology, 2017, 48(2): 232-236. DOI: 10.16355/j.cnki.issn1007-9432tyut.2017.02.016. |
[29] |
闫文举, 杨宏伟, 孙芯竹, 等. 废旧矿井用直线电机重力储能装置及其多储能块协同控制方法: 117639015B [P]. 2024-06-21.
YAN W J, YANG H W, SUN X Z, et al. Linear motor gravity energy storage device for waste mine and multi-energy-storage-block cooperative control method of linear motor gravity energy storage device: 117639015B [P]. 2024-06-21. |
[30] |
MUGYEMA M, KAMPER M J, WANG R J, et al. Performance and cost comparison of drive technologies for a linear electric machine gravity energy storage system [J]. IEEE access, 2024, 12: 46953-46966. DOI: 10.1109/ACCESS.2024.3383161. |
[31] |
PAN J F, CHEUNG N C, ZOU Y. An improved force distribution function for linear switched reluctance motor on force ripple minimization with nonlinear inductance modeling [J]. IEEE transactions on magnetics, 2012, 48(11): 3064-3067. DOI: 10.1109/TMAG.2012.2202376. |