[1] KIKSTRA J S, MASTRUCCI A, MIN J, et al. Decent living gaps and energy needs around the world [J]. Environmental research letters, 2021, 16(9): 095006. DOI:  10.1088/1748-9326/ac1c27.
[2] DECASTRO M, SALVADOR S, GÓMEZ-GESTEIRA M, et al. Europe, China and the United States: three different approaches to the development of offshore wind energy [J]. Renewable and sustainable energy reviews, 2019, 109: 55-70. DOI:  10.1016/j.rser.2019.04.025.
[3] ZHAO X G, REN L Z. Focus on the development of offshore wind power in China: Has the golden period come? [J]. Renewable energy, 2015, 81: 644-657. DOI:  10.1016/j.renene.2015.03.077.
[4] HARRISON-ATLAS D, LOPEZ A, LANTZ E. Dynamic land use implications of rapidly expanding and evolving wind power deployment [J]. Environmental research letters, 2022, 17(4): 044064. DOI:  10.1088/1748-9326/ac5f2c.
[5] 杨光亚. 欧洲海上风电工程实践回顾及未来技术展望 [J]. 电力系统自动化, 2021, 45(21): 23-32. DOI:  10.7500/AEPS20210427001.

YANG G Y. Review on engineering practices and future technology prospects of European offshore wind power [J]. Automation of electric power systems, 2021, 45(21): 23-32. DOI:  10.7500/AEPS20210427001.
[6] MOON H, JEONG J, PARK S, et al. Numerical and experimental validation of vortex generator effect on power performance improvement in MW-class wind turbine blade [J]. Renewable energy, 2023, 212: 443-454. DOI:  10.1016/j.renene.2023.04.104.
[7] 刘晓明, 谭祖贶, 袁振华, 等. 柔性直流接入海上风电并网选址综合优化 [J]. 发电技术, 2022, 43(6): 892-900. DOI:  10.12096/j.2096-4528.pgt.22011.

LIU X M, TAN Z K, YUAN Z H, et al. Comprehensive optimization of access point selection for offshore wind farm integrated with voltage source converter high voltage direct current [J]. Power generation technology, 2022, 43(6): 892-900. DOI:  10.12096/j.2096-4528.pgt.22011.
[8] CROWLE A, THIES P. Floating offshore wind turbines port requirements for construction [J]. Proceedings of the institution of mechanical engineers, part M: journal of engineering for the maritime environment, 2022, 236(4): 1047-1056. DOI:  10.1177/14750902221078425.
[9] ARGIN M, YERCI V, ERDOGAN N, et al. Exploring the offshore wind energy potential of Turkey based on multi-criteria site selection [J]. Energy strategy reviews, 2019, 23: 33-46. DOI:  10.1016/j.esr.2018.12.005.
[10] GAO X X, YANG H X, LU L. Study on offshore wind power potential and wind farm optimization in Hong Kong [J]. Applied energy, 2014, 130: 519-531. DOI:  10.1016/j.apenergy.2014.02.070.
[11] AYDIN N Y, KENTEL E, DUZGUN S. GIS-based environmental assessment of wind energy systems for spatial planning: a case study from western Turkey [J]. Renewable and sustainable energy reviews, 2010, 14(1): 364-373. DOI:  10.1016/j.rser.2009.07.023.
[12] ATICI K B, SIMSEK A B, ULUCAN A, et al. A GIS-based multiple criteria decision analysis approach for wind power plant site selection [J]. Utilities policy, 2015, 37: 86-96. DOI:  10.1016/j.jup.2015.06.001.
[13] SHAPERE D. The structure of scientific revolutions [J]. The philosophical review, 1964, 73(3): 383-394. DOI:  10.2307/2183664.
[14] BURT R S. Structural holes and good ideas [J]. American journal of sociology, 2004, 110(2): 349-399. DOI:  10.1086/421787.
[15] PIROLLI P, CARD S. Information foraging [J]. Psychological review, 1999, 106(4): 643. DOI:  10.1037/0033-295X.106.4.643.
[16] KLEINBERG J. Bursty and hierarchical structure in streams [C]// Anon. Proceedings of the Eighth ACM SIGKDD international Conference on Knowledge Discovery and Data Mining, Edmonton Alberta, Canada, July 23, 2002. New York: Association for Computing Machinery, 2002: 91-101. DOI:  10.1145/775047.775061.
[17] 陈超美. CiteSpace的分析原理 [M]//陈超美, 李杰. 科学知识前沿图谱实践. 北京: 高等教育出版社, 2018: 1-4.

CHEN C M. Design and analytic principles of CiteSpace [M]// CHEN C M, LI J. Practice of Mapping Scientific Frontiers. Beijing: Higher Education Press, 2018: 1-4.
[18] LI X J, MA E, QU H L. Knowledge mapping of hospitality research− a visual analysis using CiteSpace [J]. International journal of hospitality management, 2017, 60: 77-93. DOI:  10.1016/j.ijhm.2016.10.006.
[19] SUN Y Q, WU S M, GONG G Y. Trends of research on polycyclic aromatic hydrocarbons in food: a 20-year perspective from 1997 to 2017 [J]. Trends in food science technology, 2019, 83: 86-98. DOI:  10.1016/j.jpgs.2018.11.015.
[20] 韩增林, 李彬, 张坤领, 等. 基于CiteSpace中国海洋经济研究的知识图谱分析 [J]. 地理科学, 2016, 36(5): 643-652. DOI:  10.13249/j.cnki.sgs.2016.05.001.

HAN Z L, LI B, ZHANG K L, et al. Knowledge structure of China's marine economy research: an analysis based on CiteSpace map [J]. Scientia geographica sinica, 2016, 36(5): 643-652. DOI:  10.13249/j.cnki.sgs.2016.05.001.
[21] ZANUTTIGH B, ANGELELLI E, BELLOTTI G, et al. Boosting blue growth in a mild sea: analysis of the synergies produced by a multi-purpose offshore installation in the northern Adriatic, Italy [J]. Sustainability, 2015, 7(6): 6804-6853. DOI:  10.3390/su7066804.
[22] 唐征歧, 江建平, 李子林, 等. 深远海域海上风电场定量选址方法研究 [J]. 交通信息与安全, 2018, 36(2): 106-111. DOI:  10.3963/j.issn.1674-4861.2018.02.015.

TANG Z Q, JIANG J P, LI Z L, et al. A quantitative method for site selection of offshore wind farms in far-reaching sea areas [J]. Journal of transport information and safety, 2018, 36(2): 106-111. DOI:  10.3963/j.issn.1674-4861.2018.02.015.
[23] 梅西, 熊伟, 张勇, 等. 中国海域表层沉积物分布规律及沉积分异模式 [J]. 中国地质, 2020, 47(5): 1447-1462. DOI:  10.12029/gc20200511.

MEI X, XIONG W, ZHANG Y, et al. Distribution regularity and sedimentary differentiation patterns of China seas surface sediments [J]. Geology in China, 2020, 47(5): 1447-1462. DOI:  10.12029/gc20200511.
[24] 刘必劲. 福建省海上风电场选址影响因素探讨 [J]. 福建水产, 2015, 37(4): 320-324. DOI:  10.14012/j.cnki.fjsc.2015.04.009.

LIU B J. Research on the influence factors of offshore wind farm location in Fujian Province [J]. Journal of Fujian fisheries, 2015, 37(4): 320-324. DOI:  10.14012/j.cnki.fjsc.2015.04.009.
[25] 徐龙. 海上风电推动能源转型的战略选择分析 [J]. 质量与市场, 2021(11): 145-147.

XU L. Analysis of strategic options for offshore wind to drive the energy transition [J]. Quality & market, 2021(11): 145-147.
[26] 单治钢, 孙淼军, 王振红, 等. 海上风电重大工程地质问题与对策研究 [J]. 工程地质学报, 2021, 29(增刊1): 203-212. DOI:  10.13544/j.cnki.jeg.2021-0465.

SHAN Z G, SUN M J, WANG Z H, et al. Research on major engineering geological problems and corresponding countermeasures in offshore wind power [J]. Journal of engineering geology, 2021, 29(Suppl.1): 203-212. DOI:  10.13544/j.cnki.jeg.2021-0465.
[27] 李中, 谢仁军, 吴怡, 等. 中国海洋油气钻完井技术的进展与展望 [J]. 天然气工业, 2021, 41(8): 178-185. DOI:  10.3787/j.issn.1000-0976.2021.08.016.

LI Z, XIE R J, WU Y, et al. Progress and prospect of CNOOC's oil and gas well drilling and completion technologies [J]. Natural gas industry, 2021, 41(8): 178-185. DOI:  10.3787/j.issn.1000-0976.2021.08.016.
[28] 刘展志, 王诗超, 郝为瀚, 等. 大规模海上风电集中送出建设模式研究 [J]. 南方能源建设, 2023, 10(1): 13-20. DOI:  10.16516/j.gedi.issn2095-8676.2023.01.002.

LIU Z Z, WANG S C, HAO W H, et al. Research on construction mode of large-scale offshore wind power centralized transmission [J]. Southern energy construction, 2023, 10(1): 13-20. DOI:  10.16516/j.gedi.issn2095-8676.2023.01.002.
[29] 王晴勤, 温国标. 基于交能融合的分布式海上风电选址与布置 [J]. 南方能源建设, 2024, 11(2): 59-67. DOI:  10.16516/j.ceec.2024.2.06.

WANG Q Q, WEN G B. Site selection and layout of distributed offshore wind power based on energy and transportation integration [J]. Southern energy construction, 2024, 11(2): 59-67. DOI:  10.16516/j.ceec.2024.2.06.
[30] STRUNZ S. Speeding up the energy transition [J]. Nature sustainability, 2018, 1(8): 390-391. DOI:  10.1038/s41893-018-0120-2.
[31] 郭雨晨. 英国海洋空间规划关键问题研究及对我国的启示 [J]. 行政管理改革, 2020(4): 74-81. DOI:  10.14150/j.cnki.1674-7453.2020.04.009.

GUO Y C. Marine spatial planning: lessons learned from English experience [J]. Administration reform, 2020(4): 74-81. DOI:  10.14150/j.cnki.1674-7453.2020.04.009.
[32] PYĆ D. Implementation of marine spatial planning instruments for sustainable marine governance in Poland [J]. TransNav: international journal on marine navigation and safety of sea transportation, 2019, 13(2): 311-316. DOI:  10.12716/1001.13.02.06.
[33] BOO S Y, SHELLEY S A, SHIN S H, et al. Design and analysis of a sub-surface longline marine aquaculture farm for co-existence with offshore wind farm [J]. Journal of marine science and engineering, 2023, 11(5): 1034. DOI:  10.3390/jmse11051034.
[34] WEISS C V C, ONDIVIELA B, GUINDA X, et al. Co-location opportunities for renewable energies and aquaculture facilities in the Canary Archipelago [J]. Ocean & coastal management, 2018, 166: 62-71. DOI:  10.1016/j.ocecoaman.2018.05.006.
[35] MICHLER-CIELUCH T, KRAUSE G, BUCK B H. Marine aquaculture within offshore wind farms: social aspects of multiple-use planning [J]. GAIA-ecological perspectives for science and society, 2009, 18(2): 158-162. DOI:  10.14512/GAIA.18.2.14.
[36] 阳杰, 张建华, 马兆荣, 等. 海上风电与海洋牧场融合发展趋势与技术挑战 [J]. 南方能源建设, 2024, 11(2): 1-16. DOI:  10.16516/j.ceec.2024.2.01.

YANG J, ZHANG J H, MA Z R, et al. Development trend and technical challenges of the integration of offshore wind turbine with marine ranch [J]. Southern energy construction, 2024, 11(2): 1-16. DOI:  10.16516/j.ceec.2024.2.01.
[37] 王峰, 逯鹏, 张清涛, 等. 海上风电制氢发展趋势及前景展望 [J]. 综合智慧能源, 2022, 44(5): 41-48. DOI:  10.3969/j.issn.2097-0706.2022.05.004.

WANG F, LU P, ZHANG Q T, et al. Development trend and prospects of hydrogen production from offshore wind power [J]. Integrated intelligent energy, 2022, 44(5): 41-48. DOI:  10.3969/j.issn.2097-0706.2022.05.004.
[38] SALMON N, BAÑARES-ALCÁNTAR A R. A global, spatially granular techno-economic analysis of offshore green ammonia production [J]. Journal of cleaner production, 2022, 367: 133045. DOI:  10.1016/j.jclepro.2022.133045.