[1] 黄玲玲, 石孝华, 符杨, 等. 基于DCGCN模型的海上风电场超短期功率预测 [J]. 电力系统自动化, 2024, 48(15): 64-72. DOI:  10.7500/AEPS20231101006.

HUANG L L, SHI X H, FU Y, et al. Ultra-short-term power prediction for offshore wind farms based on dual channel graph convolution network model [J]. Automation of electric power systems, 2024, 48(15): 64-72. DOI:  10.7500/AEPS20231101006.
[2] 黄穗, 蔡彦枫, 王俊, 等. 海面风场资料在广东省阳江海上风电场区域适用性研究 [J/OL]. (2024-05-17) [2024-09-25]. http://kns.cnki.net/kcms/detail/44.1715.TK.20240515.1145.011.html.

HUANG S, CAI Y F, WANG J, et al. Applicability research of sea surface wind field data for Yangjiang offshore wind farm in Guangdong province [J/OL]. (2024-05-17) [2024-09-25]. http://kns.cnki.net/kcms/detail/44.1715.TK.20240515.1145.011.html.
[3] LI Q W, WANG J Z, ZHANG H P. Comparison of the goodness-of-fit of intelligent-optimized wind speed distributions and calculation in high-altitude wind-energy potential assessment [J]. Energy conversion and management, 2021, 247: 114737. DOI:  10.1016/j.enconman.2021.114737.
[4] 姜阳, 陆超, 袁志昌, 等. 高空风力发电系统能量捕获及变换技术: 现状与展望 [J/OL]. (2024-08-29) [2024-09-24]. http://kns.cnki.net/kcms/detail/11.2107.TM.20240829.1325.012.html.

JIANG Y, LU C, YUAN Z C, et al. Energy capture and conversion technology of high altitude wind power generation systems: current situation and prospect [J/OL]. (2024-08-29) [2024-09-24]. http://kns.cnki.net/kcms/detail/11.2107.TM.20240829.1325.012.html.
[5] CHERUBINI A, PAPINI A, VERTECHY R, et al. Airborne wind energy systems: a review of the technologies [J]. Renewable and sustainable energy reviews, 2015, 51: 1461-1476. DOI:  10.1016/j.rser.2015.07.053.
[6] VERMILLION C, COBB M, FAGIANO L, et al. Electricity in the air: insights from two decades of advanced control research and experimental flight testing of airborne wind energy systems [J]. Annual reviews in control, 2021, 52: 330-357. DOI: 10.1016/ j.arcontrol.2021.03.002.
[7] 韩爽, 刘杉. 高空风力发电关键技术、现状及发展趋势 [J]. 分布式能源, 2024, 9(1): 1-9. DOI: 10.16513/j.2096-2185.DE.240 9101.

HAN S, LIU S. Key technologies, current status and development trends of high-altitude wind power generation [J]. Distributed energy, 2024, 9(1): 1-9. DOI: 10.16513/j.2096-2185.DE.240 9101.
[8] FAGIANO L, QUACK M, BAUER F, et al. Autonomous airborne wind energy systems: accomplishments and challenges [J]. Annual review of control, robotics, and autonomous systems, 2022, 5: 603-631. DOI:  10.1146/annurev-control-042820-124658.
[9] 蔡彦枫, 李晓宇. 面向空中风力发电系统的高空风场观测 [J]. 南方能源建设, 2024, 11(1): 1-9. DOI:  10.16516/j.ceec.2024.1.01.

CAI Y F, LI X Y. High-altitude wind field observation of airborne wind energy system [J]. Southern energy construction, 2024, 11(1): 1-9. DOI:  10.16516/j.ceec.2024.1.01.
[10] 邵垒, 毛虹霖, 邢胜, 等. 高空风力发电发展现状及关键技术研究综述 [J]. 新能源进展, 2020, 8(6): 477-485. DOI:  10.3969/j.issn.2095-560X.2020.06.005.

SHAO L, MAO H L, XING S, et al. Review on development status and key technology of airborne wind energy system [J]. Advances in new and renewable energy, 2020, 8(6): 477-485. DOI:  10.3969/j.issn.2095-560X.2020.06.005.
[11] 周林, 施伟, 张松浩, 等. 破碎波作用下单桩式海上风机水动力学数值分析 [J]. 南方能源建设, 2020, 7(3): 70-80. DOI:  10.16516/j.gedi.issn2095-8676.2020.03.009.

ZHOU L, SHI W, ZHANG S H, et al. Numerical analysis of hydrodynamic characteristics of monopile-type OWT under breaking wave [J]. Southern energy construction, 2020, 7(3): 70-80. DOI:  10.16516/j.gedi.issn2095-8676.2020.03.009.
[12] KANE T R, LEVINSON D A. The use of Kane's dynamical equations in robotics [J]. The international journal of robotics research, 1983, 2(3): 3-21. DOI:  10.1177/027836498300200301.
[13] DONOHUE B, BEKNALKAR S, BRYANT M, et al. A dynamic model for underwater propulsion of an amphibious rover developed from Kane's method [C]// Anon. ASME International Mechanical Engineering Congress and Exposition, New Orleans, USA, October 29-November 2, 2023. New Orleans: American Society of Mechanical Engineers, 2023: V006T07A012. DOI:  10.1115/IMECE2023-113559.
[14] BANERJEE A. Flexible multibody dynamics: efficient formulations with applications [M]. Boca Raton: CRC Press, 2022. DOI:  10.1201/9781003231523.
[15] 商德勇, 黄欣怡, 黄云山, 等. 基于Kane方程的Delta并联机器人刚柔耦合动力学研究 [J]. 机械工程学报, 2024, 60(7): 124-133. DOI:  10.3901/JME.2024.07.124.

SHANG D Y, HUANG X Y, HUANG Y S, et al. Research on rigid-flexible coupling dynamics of delta parallel robot based on Kane equation [J]. Journal of mechanical engineering, 2024, 60(7): 124-133. DOI:  10.3901/JME.2024.07.124.
[16] SOBIE E A. An introduction to MATLAB [J]. Science signaling, 2011, 4(191): tr7. DOI:  10.1126/scisignal.2001984.
[17] ATTAWAY S. MATLAB: a practical introduction to programming and problem solving (6th ed. ) [M]. Waltham: Butterworth-Heinemann, 2022.
[18] KARRIS S T. Introduction to Simulink with engineering applications [M]. Orchard Publications, 2006.
[19] HORRI N, PIETRASZKO M. A tutorial and review on flight control co-simulation using Matlab/Simulink and flight simulators [J]. Automation, 2022, 3(3): 486-510. DOI:  10.3390/automation3030025.
[20] LIU K L, GAO Y Z, ZHU C, et al. Electrochemical modeling and parameterization towards control-oriented management of lithium-ion batteries [J]. Control engineering practice, 2022, 124: 105176. DOI:  10.1016/j.conengprac.2022.105176.