[1] |
国家能源局. 国家能源局发布2022年全国电力工业统计数据 [EB/OL]. (2023-01-18) [2023-04-12]. http://www.nea.gov.cn/2023-01/18/c_1310691509.htm.
National Energy Administration. National power industry statistics data of 2022 [EB/OL]. (2023-01-18) [2023-04-12]. http://www.nea.gov.cn/2023-01/18/c_1310691509.htm. |
[2] |
张少强, 陈露, 刘子易, 等. 大型燃煤锅炉深度调峰关键问题探讨 [J]. 南方能源建设, 2022, 9(3): 16-28. DOI: 10.16516/j.gedi.issn2095-8676.2022.03.003.
ZHANG S Q, CHEN L, LIU Z Y, et al. Discussion on key problems of depth peak adjustment for large coal-fired boilers [J]. Southern energy construction, 2022, 9(3): 16-28. DOI: 10.16516/j.gedi.issn2095-8676.2022.03.003. |
[3] |
BP. Statistical review of world energy 2021 [EB/BL]. (2021-07-31) [2023-04-12]. https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html. |
[4] |
潘尔生, 田雪沁, 徐彤, 等. 火电灵活性改造的现状、关键问题与发展前景 [J]. 电力建设, 2020, 41(9): 58-68. DOI: 10.12204/j.issn.1000-7229.2020.09.007.
PAN E S, TIAN X Q, XU T, et al. Status, critical problems and prospects of flexibility retrofit of thermal power in China [J]. Electric power construction, 2020, 41(9): 58-68. DOI: 10.12204/j.issn.1000-7229.2020.09.007. |
[5] |
王志敏, 黄骞, 王可轩, 等. 宽负荷下供热机组煤耗实时寻优分析 [J]. 中国电机工程学报, 2023, 43(4): 1347-1358. DOI: 10.13334/j.0258-8013.pcsee.222277.
WANG Z M, HUANG Q, WANG K X, et al. Real-time optimization analysis of coal consumption of co-generation units under varied loads [J]. Proceedings of the CSEE, 2023, 43(4): 1347-1358. DOI: 10.13334/j.0258-8013.pcsee.222277. |
[6] |
GU Y J, XU J, CHEN D C, et al. Overall review of peak shaving for coal-fired power units in China [J]. Renewable and sustainable energy reviews, 2016, 54: 723-731. DOI: 10.1016/j.rser.2015.10.052. |
[7] |
张志强, 宋国升, 陈崇明, 等. 某电厂600 MW机组SCR脱硝过程氨逃逸原因分析 [J]. 电力建设, 2012, 33(6): 67-70. DOI: 10.3969/j.issn.1000-7229.2012.06.017.
ZHANG Z Q, SONG G S, CHEN C M, et al. Cause analysis of ammonia escape in SCR flue gas denitrification process for 600 MW units [J]. Electric power construction, 2012, 33(6): 67-70. DOI: 10.3969/j.issn.1000-7229.2012.06.017. |
[8] |
ALOBAID F, MERTENS N, STARKLOFF R, et al. Progress in dynamic simulation of thermal power plants [J]. Progress in energy and combustion science, 2017, 59: 79-162. DOI: 10.1016/j.pecs.2016.11.001. |
[9] |
王春昌, 马剑民, 张宇博, 等. 1 000 MW机组锅炉空气预热器旁路余热利用系统节能效果分析 [J]. 热力发电, 2019, 48(11): 56-61. DOI: 10.19666/j.rlfd.201904144.
WANG C C, MA J M, ZHANG Y B, et al. Study on energy-saving effect of bypass waste heat utilization system of air preheater in a 1 000 MW unit boiler [J]. Thermal power generation, 2019, 48(11): 56-61. DOI: 10.19666/j.rlfd.201904144. |
[10] |
黄风良, 孙志坚, 李鹏程, 等. 带扰流孔波纹板的传热和阻力特性 [J]. 浙江大学学报(工学版), 2015, 49(7): 1242-1248. DOI: 10.3785/j.issn.1008-973X.2015.07.006.
HUANG F L, SUN Z J, LI P C, et al. Heat transfer and resistance characteristics of corrugated plate with spoiler holes [J]. Journal of Zhejiang University (engineering science), 2015, 49(7): 1242-1248. DOI: 10.3785/j.issn.1008-973X.2015.07.006. |
[11] |
宋晓通. 600 MW燃煤机组空预器堵塞治理对风机运行的影响 [J]. 能源科技, 2023, 21(1): 52-55.
SONG X T. Effect of air preheater choking control on fan operation of 600 MW coal-fired unit [J]. Energy science and technology, 2023, 21(1): 52-55. |
[12] |
高荣泽, 王利民, 孙浩家, 等. 回转式空气预热器积灰分层监测方法研究 [J]. 动力工程学报, 2023, 43(6): 677-685. DOI: 10.19805/j.cnki.jcspe.2023.06.003.
GAO R Z, WANG L M, SUN H J, et al. Study on layered fouling monitoring method of rotary air preheater [J]. Journal of Chinese society of power engineering, 2023, 43(6): 677-685. DOI: 10.19805/j.cnki.jcspe.2023.06.003. |
[13] |
张晓安. 锅炉吹灰优化中清洁因子的计算研究 [D]. 保定: 华北电力大学, 2013.
ZHANG X A. Calculation of clean factor for power station boiler blowing optimization [D]. Baoding: North China Electric Power University, 2013. |
[14] |
王建国, 徐志明, 杨善让. 空气预热器积灰在线监测模型 [J]. 中国电机工程学报, 2000, 20(7): 37-39. DOI: 10.3321/j.issn:0258-8013.2000.07.009.
WANG J G, XU Z M, YANG S R. On-line monitoring model of ash deposits on air preheater [J]. Proceedings of the CSEE, 2000, 20(7): 37-39. DOI: 10.3321/j.issn:0258-8013.2000.07.009. |
[15] |
SHI Y H, WEN J, CUI F S, et al. An optimization study on soot-blowing of air preheaters in coal-fired power plant boilers [J]. Energies, 2019, 12(5): 958. DOI: 10.3390/en12050958. |
[16] |
李诚. 深度调峰下燃煤机组低碳运行与氮氧化物协同优化脱除 [D]. 北京: 清华大学, 2021.
LI C. Low-carbon operation and synergistic optimization of nitrogen oxide removal of coal-fired power plants under deep peak regulation [D]. Beijing: Tsinghua University, 2021. |
[17] |
BU Y F, WANG L M, CHEN X, et al. Numerical analysis of ABS deposition and corrosion on a rotary air preheater [J]. Applied thermal engineering, 2018, 131: 669-677. DOI: 10.1016/j.applthermaleng.2017.11.082. |
[18] |
MENASHA J, DUNN-RANKIN D, MUZIO L, et al. Ammonium bisulfate formation temperature in a bench-scale single-channel air preheater [J]. Fuel, 2011, 90(7): 2445-2453. DOI: 10.1016/j.fuel.2011.03.006. |
[19] |
徐民. 超超临界锅炉宽负荷脱硝改造方案对比分析 [J]. 发电设备, 2022, 36(6): 433-436. DOI: 10.19806/j.cnki.fdsb.2022.06.012.
XU M. Comparison and analysis on wide-load denitration retrofit schemes for an ultra-supercritical boiler [J]. Power equipment, 2022, 36(6): 433-436. DOI: 10.19806/j.cnki.fdsb.2022.06.012. |
[20] |
VAN DER LANS R P, GLARBORG P, DAM-JOHANSEN K. Influence of process parameters on nitrogen oxide formation in pulverized coal burners [J]. Progress in energy and combustion science, 1997, 23(4): 349-377. DOI: 10.1016/S0360-1285(97)00012-9. |
[21] |
SMREKAR J, POTOČNIK P, SENEGAČNIK A. Multi-step-ahead prediction of NO x emissions for a coal-based boiler [J]. Applied energy, 2013, 106: 89-99. DOI: 10.1016/j.apenergy.2012.10.056. |
[22] |
CHENG T, LUO L Y, YANG L J, et al. Formation and emission characteristics of ammonium sulfate aerosols in flue gas downstream of selective catalytic reduction [J]. Energy & fuels, 2019, 33(8): 7861-7868. DOI: 10.1021/acs.energyfuels.9b01436. |