[1] 王放放, 杨鹏威, 赵光金, 等. 新型电力系统下火电机组灵活性运行技术发展及挑战 [J]. 发电技术, 2024, 45(2): 189-198. DOI:  10.12096/j.2096-4528.pgt.23079.

WANG F F, YANG P W, ZHAO G J, et al. Development and challenge of flexible operation technology of thermal power units under new power system [J]. Power Generation Technology, 2024, 45(2): 189-198. DOI:  10.12096/j.2096-4528.pgt.23079.
[2] 张少强, 陈露, 刘子易, 等. 大型燃煤锅炉深度调峰关键问题探讨 [J]. 南方能源建设, 2022, 9(3): 16-28. DOI:  10.16516/j.gedi.issn2095-8676.2022.03.003.

ZHANG S Q, CHEN L, LIU Z Y, et al. Discussion on key problems of depth peak adjustment for large coal-fired boilers [J]. Southern energy construction, 2022, 9(3): 16-28. DOI:  10.16516/j.gedi.issn2095-8676.2022.03.003.
[3] 张全斌, 周琼芳. 基于“双碳”目标的中国火力发电技术发展路径研究 [J]. 发电技术, 2023, 44(2): 143-154. DOI:  10.12096/j.2096-4528.pgt.22092.

ZHANG Q B, ZHOU Q F. Research on the Development path of China's thermal power generation technology based on the goal of "carbon peak and carbon neutralization" [J]. Power Generation Technology, 2023, 44(2): 143-154. DOI:  10.12096/j.2096-4528.pgt.22092.
[4] 潘尔生, 田雪沁, 徐彤, 等. 火电灵活性改造的现状、关键问题与发展前景 [J]. 电力建设, 2020, 41(9): 58-68. DOI:  10.12204/j.issn.1000-7229.2020.09.007.

PAN E S, TIAN X Q, XU T, et al. Status, critical problems and prospects of flexibility retrofit of thermal power in China [J]. Electric power construction, 2020, 41(9): 58-68. DOI:  10.12204/j.issn.1000-7229.2020.09.007.
[5] 王志敏, 黄骞, 王可轩, 等. 宽负荷下供热机组煤耗实时寻优分析 [J]. 中国电机工程学报, 2023, 43(4): 1347-1358. DOI:  10.13334/j.0258-8013.pcsee.222277.

WANG Z M, HUANG Q, WANG K X, et al. Real-time optimization analysis of coal consumption of co-generation units under varied loads [J]. Proceedings of the CSEE, 2023, 43(4): 1347-1358. DOI:  10.13334/j.0258-8013.pcsee.222277.
[6] GU Y J, XU J, CHEN D C, et al. Overall review of peak shaving for coal-fired power units in China [J]. Renewable and sustainable energy reviews, 2016, 54: 723-731. DOI:  10.1016/j.rser.2015.10.052.
[7] 张志强, 宋国升, 陈崇明, 等. 某电厂600 MW机组SCR脱硝过程氨逃逸原因分析 [J]. 电力建设, 2012, 33(6): 67-70. DOI:  10.3969/j.issn.1000-7229.2012.06.017.

ZHANG Z Q, SONG G S, CHEN C M, et al. Cause analysis of ammonia escape in SCR flue gas denitrification process for 600 MW units [J]. Electric power construction, 2012, 33(6): 67-70. DOI:  10.3969/j.issn.1000-7229.2012.06.017.
[8] ALOBAID F, MERTENS N, STARKLOFF R, et al. Progress in dynamic simulation of thermal power plants [J]. Progress in energy and combustion science, 2017, 59: 79-162. DOI:  10.1016/j.pecs.2016.11.001.
[9] 王春昌, 马剑民, 张宇博, 等. 1 000 MW机组锅炉空气预热器旁路余热利用系统节能效果分析 [J]. 热力发电, 2019, 48(11): 56-61. DOI:  10.19666/j.rlfd.201904144.

WANG C C, MA J M, ZHANG Y B, et al. Study on energy-saving effect of bypass waste heat utilization system of air preheater in a 1000 MW unit boiler [J]. Thermal power generation, 2019, 48(11): 56-61. DOI:  10.19666/j.rlfd.201904144.
[10] 黄风良, 孙志坚, 李鹏程, 等. 带扰流孔波纹板的传热和阻力特性 [J]. 浙江大学学报(工学版), 2015, 49(7): 1242-1248. DOI:  10.3785/j.issn.1008-973X.2015.07.006.

HUANG F L, SUN Z J, LI P C, et al. Heat transfer and resistance characteristics of corrugated plate with spoiler holes [J]. Journal of Zhejiang University (engineering science), 2015, 49(7): 1242-1248. DOI:  10.3785/j.issn.1008-973X.2015.07.006.
[11] 宋晓通. 600 MW燃煤机组空预器堵塞治理对风机运行的影响 [J]. 能源科技, 2023, 21(1): 52-55.

SONG X T. Effect of air preheater choking control on fan operation of 600 MW coal-fired unit [J]. Energy science and technology, 2023, 21(1): 52-55.
[12] 高荣泽, 王利民, 孙浩家, 等. 回转式空气预热器积灰分层监测方法研究 [J]. 动力工程学报, 2023, 43(6): 677-685. DOI:  10.19805/j.cnki.jcspe.2023.06.003.

GAO R Z, WANG L M, SUN H J, et al. Study on layered fouling monitoring method of rotary air preheater [J]. Journal of Chinese society of power engineering, 2023, 43(6): 677-685. DOI:  10.19805/j.cnki.jcspe.2023.06.003.
[13] 张晓安. 锅炉吹灰优化中清洁因子的计算研究 [D]. 保定: 华北电力大学, 2013.

ZHANG X A. Calculation of clean factor for power station boiler blowing optimization [D]. Baoding: North China Electric Power University, 2013.
[14] 王建国, 徐志明, 杨善让. 空气预热器积灰在线监测模型 [J]. 中国电机工程学报, 2000, 20(7): 37-39. DOI:  10.3321/j.issn:0258-8013.2000.07.009.

WANG J G, XU Z M, YANG S R. On-line monitoring model of ash deposits on air preheater [J]. Proceedings of the CSEE, 2000, 20(7): 37-39. DOI:  10.3321/j.issn:0258-8013.2000.07.009.
[15] SHI Y H, WEN J, CUI F S, et al. An optimization study on soot-blowing of air preheaters in coal-fired power plant boilers [J]. Energies, 2019, 12(5): 958. DOI:  10.3390/en12050958.
[16] 李诚. 深度调峰下燃煤机组低碳运行与氮氧化物协同优化脱除 [D]. 北京: 清华大学, 2021.

LI C. Low-carbon operation and synergistic optimization of nitrogen oxide removal of coal-fired power plants under deep peak regulation [D]. Beijing: Tsinghua University, 2021.
[17] BU Y F, WANG L M, CHEN X, et al. Numerical analysis of ABS deposition and corrosion on a rotary air preheater [J]. Applied thermal engineering, 2018, 131: 669-677. DOI:  10.1016/j.applthermaleng.2017.11.082.
[18] MENASHA J, DUNN-RANKIN D, MUZIO L, et al. Ammonium bisulfate formation temperature in a bench-scale single-channel air preheater [J]. Fuel, 2011, 90(7): 2445-2453. DOI:  10.1016/j.fuel.2011.03.006.
[19] 徐民. 超超临界锅炉宽负荷脱硝改造方案对比分析 [J]. 发电设备, 2022, 36(6): 433-436. DOI:  10.19806/j.cnki.fdsb.2022.06.012.

XU M. Comparison and analysis on wide-load denitration retrofit schemes for an ultra-supercritical boiler [J]. Power equipment, 2022, 36(6): 433-436. DOI:  10.19806/j.cnki.fdsb.2022.06.012.
[20] VAN DER LANS R P, GLARBORG P, DAM-JOHANSEN K. Influence of process parameters on nitrogen oxide formation in pulverized coal burners [J]. Progress in energy and combustion science, 1997, 23(4): 349-377. DOI:  10.1016/S0360-1285(97)00012-9.
[21] SMREKAR J, POTOČNIK P, SENEGAČNIK A. Multi-step-ahead prediction of NO x emissions for a coal-based boiler [J]. Applied energy, 2013, 106: 89-99. DOI:  10.1016/j.apenergy.2012.10.056.
[22] CHENG T, LUO L Y, YANG L J, et al. Formation and emission characteristics of ammonium sulfate aerosols in flue gas downstream of selective catalytic reduction [J]. Energy & fuels, 2019, 33(8): 7861-7868. DOI:  10.1021/acs.energyfuels.9b01436.
[23] 张少强, 孙晨阳, 余落杭, 等. 燃煤发电机组灵活性改造的研究进展综述 [J]. 南方能源建设, 2023, 10(2): 48-54. DOI:  10.16516/j.gedi.issn2095-8676.2023.02.007.

ZHANG S Q, SUN C Y, YU L H, et al. Research progress on flexibility modification of coal-fired generating units [J]. Southern energy construction, 2023, 10(2): 48-54. DOI:  10.16516/j.gedi.issn2095-8676.2023.02.007.
[24] 郭宬昊, 谢子硕, 王金星, 等. 新能源系统中双储能耦合燃煤机组的应用策略研究 [J]. 南方能源建设, 2022, 9(3): 62-71. DOI:  10.16516/j.gedi.issn2095-8676.2022.03.007.

GUO C H, XIE Z S, WANG J X, et al. Research on operation strategy of the application of dual energy storage coupled with coal-fired units in new energy power system [J]. Southern energy construction, 2022, 9(3): 62-71. DOI:  10.16516/j.gedi.issn2095-8676.2022.03.007.
[25] 窦文雷, 张娜, 胡旌伟, 等. 寒地新能源与灵活供热煤电改造协同规划模型 [J]. 电力建设, 2024, 45(9): 13-25. DOI:  10.12204/j.issn.1000-7229.2024.09.002.

DOU W L, ZHANG N, HU J W, et al. Cooperative planning model for renewable energy and flexible coal-fired chp in cold regions [J]. Electric power construction, 2024, 45(9): 13-25. DOI:  10.12204/j.issn.1000-7229.2024.09.002.