[1] 张丝钰, 张宁, 卢静, 等. 绿氢示范项目模式分析与发展展望 [J]. 南方能源建设, 2023, 10(3): 89-96. DOI:  10.16516/j.gedi.issn2095-8676.2023.03.009.

ZHANG S Y, ZHANG N, LU J, et al. Analysis and development outlook on the typical modes of green hydrogen projects [J]. Southern energy construction, 2023, 10(3): 89-96. DOI:  10.16516/j.gedi.issn2095-8676.2023.03.009.
[2] 罗志斌, 孙潇, 孙翔, 等. 氢能与储能耦合发展的机遇与挑战 [J]. 南方能源建设, 2022, 9(4): 24-31. DOI:  10.16516/j.gedi.issn2095-8676.2022.04.003.

LUO Z B, SUN X, SUN X, et al. The coupling development of hydrogen and energy storage technology: opportunities and challenges [J]. Southern energy construction, 2022, 9(4): 24-31. DOI:  10.16516/j.gedi.issn2095-8676.2022.04.003.
[3] 史倩, 过良, 张永亮. 新能源制氢在传统炼化企业的应用 [J]. 南方能源建设, 2022, 9(4): 32-39. DOI:  10.16516/j.gedi.issn2095-8676.2022.04.004.

SHI Q, GUO L, ZHANG Y L. Application of water-electrolytic hydrogen production technology in traditional refinery and chemical enterprise [J]. Southern energy construction, 2022, 9(4): 32-39. DOI:  10.16516/j.gedi.issn2095-8676.2022.04.004.
[4] 孙翔, 刘成良, 牛霞, 等. 风光耦合制氢系统典型设计方案研究 [J]. 南方能源建设, 2023, 10(3): 112-119. DOI:  10.16516/j.gedi.issn2095-8676.2023.03.012.

SUN X, LIU C L, NIU X, et al. Research on typical design of wind-solar coupled hydrogen production system [J]. Southern energy construction, 2023, 10(3): 112-119. DOI:  10.16516/j.gedi.issn2095-8676.2023.03.012.
[5] 中国氢能源及燃料电池产业创新战略联盟. 中国氢能源及燃料电池产业白皮书2020 [M]. 北京: 人民日报出版社, 2020.

China Hydrogen Energy and Fuel Cell Industry Innovation Strategic Alliance. White paper on China's hydrogen energy and fuel cell industry 2020 [M]. Beijing: People's Daily Press, 2020.
[6] 李洋洋, 邓欣涛, 古俊杰, 等. 碱性水电解制氢系统建模综述及展望 [J]. 汽车工程, 2022, 44(4): 567-582 DOI:  10.19562/j.chinasae.qcgc.2022.04.012.

LI Y Y, DENG X T, GU J J, et al. Comprehensive review and prospect of the modeling of alkaline water electrolysis system for hydrogen production [J]. Automotive engineering, 2022, 44(4): 567-582. DOI:  10.19562/j.chinasae.qcgc.2022.04.012.
[7] 韩睿康. 可再生能源制氢技术与应用 [J]. 节能, 2023, 42(6): 94-96.

HAN R K. Renewable energy hydrogen production technology and application [J]. Energy conservation, 2023, 42(6): 94-96.
[8] 张海龙. 碱性水电解制氢装置模型研究综述 [J]. 太阳能, 2024(5): 34-41 DOI:  10.19911/j.1003-0417.tyn20230516.02.

ZHANG H L. A review of model research on alkaline water electrolysis hydrogen production equipment [J]. Solar energy, 2024(5): 34-41. DOI:  10.19911/j.1003-0417.tyn20230516.02.
[9] 章寒冰, 叶吉超, 胡鑫威, 等. 碱液制氢电解槽动态阻抗建模 [J]. 浙江电力, 2023, 42(5): 49-58.10.19585/j.zjdl.202305006.

ZHANG H B, YE J C, HU X W, et al. Dynamic impedance modeling of an alkaline electrolyzer for hydrogen production [J]. Zhejiang electric power, 2023, 42(5): 49-58.10.19585/j.zjdl.202305006.
[10] ULLEBERG Ø. Modeling of advanced alkaline electrolyzers: a system simulation approach [J]. International journal of hydrogen energy, 2003, 28(1): 21-33. DOI:  10.1016/S0360-3199(02)00033-2.
[11] SÁNCHEZ M, AMORES E, ABAD D, et al. Aspen Plus model of an alkaline electrolysis system for hydrogen production [J]. International journal of hydrogen energy, 2020, 45(7): 3916-3929. DOI:  10.1016/j.ijhydene.2019.12.027.
[12] SÁNCHEZ M, AMORES E, RODRÍGUEZ L, et al. Semi-empirical model and experimental validation for the performance evaluation of a 15 kW alkaline water electrolyzer [J]. International journal of hydrogen energy, 2018, 43(45): 20332-20345. DOI:  10.1016/j.ijhydene.2018.09.029.
[13] BRAUNS J, TUREK T. Model-based analysis and optimization of pressurized alkaline water electrolysis powered by renewable energy [J]. Journal of the electrochemical society, 2023, 170(6): 064510. DOI:  10.1149/1945-7111/acd9f1.
[14] HAUG P, KREITZ B, KOJ M, et al. Process modelling of an alkaline water electrolyzer [J]. International journal of hydrogen energy, 2017, 42(24): 15689-15707. DOI:  10.1016/j.ijhydene.2017.05.031.
[15] HAUG P, KOJ M, TUREK T. Influence of process conditions on gas purity in alkaline water electrolysis [J]. International journal of hydrogen energy, 2017, 42(15): 9406-9418. DOI:  10.1016/j.ijhydene.2016.12.111.
[16] QI R M, BECKER M, BRAUNS J, et al. Channel design optimization of alkaline electrolysis stacks considering the trade-off between current efficiency and pressure drop [J]. Journal of power sources, 2023, 579: 233222. DOI:  10.1016/j.jpowsour.2023.233222.
[17] NAMI H, RIZVANDI O B, CHATZICHRISTODOULOU C, et al. Techno-economic analysis of current and emerging electrolysis technologies for green hydrogen production [J]. Energy conversion and management, 2022, 269: 116162. DOI:  10.1016/j.enconman.2022.116162.
[18] HAMMOUDI M, HENAO C, AGBOSSOU K, et al. New multi-physics approach for modelling and design of alkaline electrolyzers [J]. International journal of hydrogen energy, 2012, 37(19): 13895-13913. DOI:  10.1016/j.ijhydene.2012.07.015.
[19] AMORES E, RODRÍGUEZ J, OVIEDO J, et al. Development of an operation strategy for hydrogen production using solar PV energy based on fluid dynamic aspects [J]. Open engineering, 2017, 7(1): 141-152. DOI:  10.1515/eng-2017-0020.
[20] HUG W, BUSSMANN H, BRINNER A. Intermittent operation and operation modeling of an alkaline electrolyzer [J]. International journal of hydrogen energy, 1993, 18(12): 973-977. DOI:  10.1016/0360-3199(93)90078-O.
[21] BUTTLER A, SPLIETHOFF H. Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: a review [J]. Renewable and sustainable energy reviews, 2018, 82: 2440-2454. DOI:  10.1016/j.rser.2017.09.003.
[22] ZENG K, ZHANG D K. Recent progress in alkaline water electrolysis for hydrogen production and applications [J]. Progress in energy and combustion science, 2010, 36(3): 307-326. DOI:  10.1016/j.pecs.2009.11.002.
[23] NI M, LEUNG M, LEUNG D. Energy and exergy analysis of hydrogen production by solid oxide steam electrolyzer plant [J]. International journal of hydrogen energy, 2007, 32(18): 4648-4660. DOI:  10.1016/j.ijhydene.2007.08.005.
[24] 侯朋飞, 单小勇, 白建明. 碱性水电解镍基析氧催化材料最新进展 [J]. 工业催化, 2024, 32(4): 18-29. DOI:  10.3969/j.issn.1008-1143.2024.04.003.

HOU P F, SHAN X Y, BAI J M. Recent developments on Ni-based oxygen evolution materials for alkaline water electrolysis [J]. Industrial catalysis, 2024, 32(4): 18-29. DOI:  10.3969/j.issn.1008-1143.2024.04.003.
[25] 刘艳莹, 尚蕴山, 程小波, 等. 碱性电解水用隔膜材料的优选研究 [J]. 低碳化学与化工, 2024, 49(3): 111-117. DOI:  10.12434/j.issn.2097-2547.20230283.

LIU Y Y, SHANG Y S, CHENG X B, et al. Study on optimum selection of diaphragm materials for alkaline electyolytic water [J]. Low-carbon chemistry and chemical engineering, 2024, 49(3): 111-117. DOI:  10.12434/j.issn.2097-2547.20230283.
[26] HAORAN C, XIA Y H, WEI W, et al. Safety and efficiency problems of hydrogen production from alkaline water electrolyzers driven by renewable energy sources [J]. International journal of hydrogen energy, 2024, 54: 700-712. DOI:  10.1016/j.ijhydene.2023.08.324.
[27] JANG D, CHOI W, CHO H S, et al. Numerical modeling and analysis of the temperature effect on the performance of an alkaline water electrolysis system [J]. Journal of power sources, 2021, 506: 230106. DOI:  10.1016/j.jpowsour.2021.230106.
[28] 张腾飞. 碱性水电解制氢系统的建模分析与设计优化 [D]. 北京: 北京化工大学, 2023. DOI:  10.26939/d.cnki.gbhgu.2023.000440.

ZHANG T F. Modeling analysis and design optimization of alkaline water electrolysis system for hydrogen production [D]. Beijing: Beijing University of Chemical Technology, 2023. DOI:  10.26939/d.cnki.gbhgu.2023.000440.
[29] ZHANG W Z, LIU M H, GU X, et al. Water electrolysis toward elevated temperature: advances, challenges and frontiers [J]. Chemical reviews, 2023, 123(11): 7119-7192. DOI:  10.1021/acs.chemrev.2c00573.
[30] JANG D, CHO H S, KANG S. Numerical modeling and analysis of the effect of pressure on the performance of an alkaline water electrolysis system [J]. Applied energy, 2021, 287: 116554. DOI:  10.1016/j.apenergy.2021.116554.