[1] 申安, 董剑敏, 李露阳. ±800 kV换流站造价结构及投资水平分析 [J]. 南方能源建设, 2020, 7(3): 119-124. DOI:  10.16516/j.gedi.issn2095-8676.2020.03.016.

SHEN A, DONG J M, LI L Y. Analysis on cost structure and investment level of ±800 kV converter stations [J]. Southern energy construction, 2020, 7(3): 119-124. DOI:  10.16516/j.gedi.issn2095-8676.2020.03.016.
[2] 郭琦, 卢远宏. 新型电力系统的建模仿真关键技术及展望 [J]. 电力系统自动化, 2022, 46(10): 18-32. DOI:  10.7500/AEPS20220227007.

GUO Q, LU Y H. Key technologies and prospects of modeling and simulation of new power system [J]. Automation of electric power systems, 2022, 46(10): 18-32. DOI:  10.7500/AEPS20220227007.
[3] 梁旭明, 张平, 常勇. 高压直流输电技术现状及发展前景 [J]. 电网技术, 2012, 36(4): 1-9. DOI:  10.13335/j.1000-3673.pst.2012.04.024.

LIANG X M, ZHANG P, CHANG Y. Recent advances in high-voltage direct-current power transmission and its developing potential [J]. Power system technology, 2012, 36(4): 1-9. DOI:  10.13335/j.1000-3673.pst.2012.04.024.
[4] 谢惠藩, 李桂源, 徐光虎, 等. 大容量特高压多端混合直流实际运行关键特性分析 [J]. 南方电网技术, 2022, 16(2): 50-57. DOI:  10.13648/j.cnki.issn1674-0629.2022.02.007.

XIE H F, LI G Y, XU G H, et al. Analysis of key operation characteristics of high-capacity multi-terminal hybrid UHVDC [J]. Southern power system technology, 2022, 16(2): 50-57. DOI:  10.13648/j.cnki.issn1674-0629.2022.02.007.
[5] 王增平, 胡加伟, 王彤, 等. 大容量直流换相失败后功率恢复速率对送端系统暂态稳定的影响分析 [J]. 电网技术, 2020, 44(5): 1815-1825. DOI:  10.13335/j.1000-3673.pst.2019.1107.

WANG Z P, HU J W, WANG T, et al. Analysis of impact of power recovery speed on transient stability of sending-side system after large capacity HVDC commutation failure [J]. Power system technology, 2020, 44(5): 1815-1825. DOI:  10.13335/j.1000-3673.pst.2019.1107.
[6] 莫泽, 汪娟娟, 丁天皓, 等. 基于改进开关函数的LCC-HVDC直流阻抗建模及小扰动稳定性分析 [J]. 电网技术, 2022, 46(11): 4491-4501. DOI:  10.13335/j.1000-3673.pst.2021.2151.

MO Z, WANG J J, DING T H, et al. LCC-HVDC impedance modeling and small disturbance stability analysis based on improved switching function [J]. Power system technology, 2022, 46(11): 4491-4501. DOI:  10.13335/j.1000-3673.pst.2021.2151.
[7] 姚良忠, 吴婧, 王志冰, 等. 未来高压直流电网发展形态分析 [J]. 中国电机工程学报, 2014, 34(34): 6007-6020. DOI:  10.13334/j.0258-8013.pcsee.2014.34.001.

YAO L Z, WU J, WANG Z B, et al. Pattern analysis of future HVDC grid development [J]. Proceedings of the CSEE, 2014, 34(34): 6007-6020. DOI:  10.13334/j.0258-8013.pcsee.2014.34.001.
[8] 徐春婷. 同步调相机对直流输电系统电压稳定性的影响研究 [D]. 哈尔滨: 哈尔滨理工大学, 2020.

XU C T. Research on the influence of synchronous condenser on voltage stability of HVDC transmission system [D]. Harbin: Harbin University of Science and Technology, 2020.
[9] 赵晋泉, 朱尧靓, 潘尔生, 等. 适用于大规模新能源接入直流送端电网的暂态压升严重性指标研究 [J]. 南方电网技术, 2020, 14(12): 1-9. DOI:  10.13648/j.cnki.issn1674-0629.2020.12.001.

ZHAO J Q, ZHU Y L, PAN E S, et al. Study on transient voltage rise severity index for the high renewable power-penetrated UHVDC sending-end power grid [J]. Southern power system technology, 2020, 14(12): 1-9. DOI:  10.13648/j.cnki.issn1674-0629.2020.12.001.
[10] 马骞, 田宝烨, 邱建, 等. STATCOM提升单LCC-HVDC馈入系统静态电压稳定裕度的机理分析 [J]. 南方电网技术, 2020, 14(11): 49-56. DOI:  10.13648/j.cnki.issn1674-0629.2020.11.008.

MA Q, TIAN B Y, QIU J, et al. Mechanism analysis of STATCOM increasing static voltage stability margin of single-infeed LCC-HVDC system [J]. Southern power system technology, 2020, 14(11): 49-56. DOI:  10.13648/j.cnki.issn1674-0629.2020.11.008.
[11] 王峰, 刘天琪, 丁媛媛, 等. 直流闭锁引起的暂态过电压计算方法及其影响因素分析 [J]. 电网技术, 2016, 40(10): 3059-3065. DOI:  10.13335/j.1000-3673.pst.2016.10.019.

WANG F, LIU T Q, DING Y Y, et al. Calculation method and influencing factors of transient overvoltage caused by HVDC block [J]. Power system technology, 2016, 40(10): 3059-3065. DOI:  10.13335/j.1000-3673.pst.2016.10.019.
[12] 索之闻, 李晖, 蒋维勇, 等. 考虑离散调压设备动作频次的高压直流输电系统控制优化 [J]. 电力系统自动化, 2020, 44(3): 211-219. doi:  10.7500/AEPS20190823003

SUO Z W, LI H, JIANG W Y, et al. Control optimization of HVDC system considering action frequency of discrete voltage regulation equipment [J]. Automation of electric power systems, 2020, 44(3): 211-219. doi:  10.7500/AEPS20190823003
[13] 廖卉莲, 吴宁, 彭华坤, 等. 换流站交流滤波器最优投入组数确定方法 [J]. 山东大学学报(工学版), 2022, 52(5): 77-83. DOI:  10.6040/j.issn.1672-3961.0.2021.595.

LIAO H L, WU N, PENG H K, et al. Method for determining the optimal sets of switching on alternating current filters in converter stations [J]. Journal of Shandong University (engineering science), 2022, 52(5): 77-83. DOI:  10.6040/j.issn.1672-3961.0.2021.595.
[14] 涂仁川, 赵成功, 刘志军, 等. 减小交直流电网无功交换的无功控制策略研究 [J]. 电力电容器与无功补偿, 2018, 39(1): 17-22,27. DOI:  10.14044/j.1674-1757.pcrpc.2018.01.004.

TU R C, ZHAO C G, LIU Z J, et al. Study on reactive power control strategy for reducing reactive power exchange between AC and DC power grids [J]. Power capacitor & reactive power compensation, 2018, 39(1): 17-22,27. DOI:  10.14044/j.1674-1757.pcrpc.2018.01.004.
[15] 洪妙, 刘栋, 骆林峰. 换流站交流滤波器的配置与控制功能优化 [J]. 电力电容器与无功补偿, 2012, 33(3): 6-9,15. DOI:  10.3969/j.issn.1674-1757.2012.03.002.

HONG M, LIU D, LUO L F. Configuration and control function optimization of AC filter for converter station [J]. Power capacitor & reactive power compensation, 2012, 33(3): 6-9,15. DOI:  10.3969/j.issn.1674-1757.2012.03.002.
[16] 刘振亚, 张启平, 王雅婷, 等. 提高西北新甘青750 kV送端电网安全稳定水平的无功补偿措施研究 [J]. 中国电机工程学报, 2015, 35(5): 1015-1022. DOI:  10.13334/j.0258-8013.pcsee.2015.05.001.

LIU Z Y, ZHANG Q P, WANG Y T, et al. Research on reactive compensation strategies for improving stability level of sending-end of 750 kV grid in Northwest China [J]. Proceedings of the CSEE, 2015, 35(5): 1015-1022. DOI:  10.13334/j.0258-8013.pcsee.2015.05.001.
[17] 沙江波, 杨硕, 郭春义, 等. 同步调相机对分层接入特高压直流输电系统的换相失败抑制作用研究 [J]. 电网技术, 2019, 43(10): 3552-3561. DOI:  10.13335/j.1000-3673.pst.2019.0826.

SHA J B, YANG S, GUO C Y, et al. Study on suppression effect of synchronous condenser on commutation failure of UHVDC system under hierarchical connection mode [J]. Power system technology, 2019, 43(10): 3552-3561. DOI:  10.13335/j.1000-3673.pst.2019.0826.
[18] 郭一兵, 凌在汛, 崔一铂, 等. 特高压交直流系统动态无功支撑用大型调相机运行需求分析 [J]. 湖北电力, 2016, 40(5): 1-4,34. DOI:  10.19308/j.hep.2016.05.001.

GUO Y B, LING Z X, CUI Y B, et al. Characteristics analysis of large synchronous condenser for UHV DC project [J]. Hubei electric power, 2016, 40(5): 1-4,34. DOI:  10.19308/j.hep.2016.05.001.
[19] 赵一琰, 华文, 邓晖, 等. 调相机接入对浙江电网的影响研究 [J]. 浙江电力, 2018, 37(1): 8-12. doi:  10.19585/j.zjdl.201801002

ZHAO Y Y, HUA W, DENG H, et al. Research on the impact of synchronous condenser on Zhejiang power grid [J]. Zhejiang electric power, 2018, 37(1): 8-12. doi:  10.19585/j.zjdl.201801002
[20] 王雅婷, 张一驰, 周勤勇, 等. 新一代大容量调相机在电网中的应用研究 [J]. 电网技术, 2017, 41(1): 22-28. DOI:  10.13335/j.1000-3673.pst.2016.0715.

WANG Y T, ZHANG Y C, ZHOU Q Y, et al. Study on application of new generation large capacity synchronous condenser in power grid [J]. Power system technology, 2017, 41(1): 22-28. DOI:  10.13335/j.1000-3673.pst.2016.0715.
[21] 赫英明. 弱送端HVDC系统中同步调相机的性能分析 [D]. 哈尔滨: 哈尔滨理工大学, 2019.

HE Y M. Analysis of performance of synchronous condenser in weak sending system in HVDC [D]. Harbin: Harbin University of Science and Technology, 2019.
[22] 张宝金, 王昭, 王晓阳. 电网结构对直流换流站无功补偿分组容量影响分析 [J]. 电网与清洁能源, 2008, 24(9): 10-12. DOI:  10.3969/j.issn.1674-3814.2008.09.003.

ZHANG B J, WANG Z, WANG X Y. Effect of grid structure on the capacity-grouping of the reactive power compensation in DC converter station [J]. Power system and clean energy, 2008, 24(9): 10-12. DOI:  10.3969/j.issn.1674-3814.2008.09.003.
[23] 王震. LCC-HVDC受端换流站无功协调控制策略研究 [D]. 长沙: 长沙理工大学, 2020.

WANG Z. Research on reactive power coordinated control strategy of LCC-HVDC receiving converter station [D]. Changsha: Changsha University of Science and Technology, 2020.
[24] YIN C Y, LI F T. Analytical expression on transient overvoltage peak value of converter bus caused by DC faults [J]. IEEE transactions on power systems, 2021, 36(3): 2741-2744. DOI:  10.1109/TPWRS.2021.3062218.