[1] 陈海生, 刘畅, 徐玉杰, 等. 储能在碳达峰碳中和目标下的战略地位和作用 [J]. 储能科学与技术, 2021, 10(5): 1477-1485. DOI:  10.19799/j.cnki.2095-4239.2021.0389.

CHEN H S, LIU C, XU Y J, et al. The strategic position and role of energy storage under the goal of carbon peak and carbon neutrality [J]. Energy storage science and technology, 2021, 10(5): 1477-1485. DOI:  10.19799/j.cnki.2095-4239.2021.0389.
[2] 任育杰, 胡健, 张晨阳, 等. 耦合太阳能的绝热压缩空气燃气三联产系统性能分析 [J]. 中国测试, 2023, 49(6): 137-142. DOI:  10.11857/j.issn.1674-5124.2021100038.

REN Y J, HU J, ZHANG C Y, et al. Performances analysis of adiabatic compressed air gas CCHP system coupled with solar energy [J]. China measurement & test, 2023, 49(6): 137-142. DOI:  10.11857/j.issn.1674-5124.2021100038.
[3] 何青, 王珂. 等温压缩空气储能技术及其研究进展 [J]. 热力发电, 2022, 51(8): 11-19. DOI:  10.19666/j.rlfd.202203042.

HE Q, WANG K. Research progress of isothermal compressed air energy storage technology [J]. Thermal power generation, 2022, 51(8): 11-19. DOI:  10.19666/j.rlfd.202203042.
[4] 陈海生, 李泓, 马文涛, 等. 2021年中国储能技术研究进展 [J]. 储能科学与技术, 2022, 11(3): 1052-1076. DOI:  10.19799/j.cnki.2095-4239.2022.0105.

CHEN H S, LI H, MA W T, et al. Research progress of energy storage technology in China in 2021 [J]. Energy storage science and technology, 2022, 11(3): 1052-1076. DOI:  10.19799/j.cnki.2095-4239.2022.0105.
[5] 李亚楼, 赵飞, 樊雪君. 构网型储能及其应用综述 [J/OL]. 发电技术, 2014: 1-13. (2024-06-20) [2024-06-29]. http://kns.cnki.net/kcms/detail/33.1405.TK.20240619.1715.004.html.

LI Y L, ZHAO F, FAN X J. A review of grid-forming energy storage and its applications [J/OL]. Power generation technology, 2014: 1-13. (2024-06-20) [2024-06-29]. http://kns.cnki.net/kcms/detail/33.1405.TK.20240619.1715.004.html.
[6] 夏晨阳, 杨子健, 周娟, 等. 基于新型电力系统的储能技术研究 [J]. 内蒙古电力技术, 2022, 40(4): 3-12. DOI:  10.19929/j.cnki.nmgdljs.2022.0058.

XIA C Y, YANG Z J, ZHOU J, et al. Research of energy storage technology based on new power system [J]. Inner Mongolia electric power, 2022, 40(4): 3-12. DOI:  10.19929/j.cnki.nmgdljs.2022.0058.
[7] 潘文, 令兰宁, 李瑞雄, 等. 绝热-近等温压缩空气耦合储能过程热压匹配规律 [J]. 储能科学与技术, 2023, 12(11): 3425-3434. DOI:  10.19799/j.cnki.2095-4239.2023.0374.

PAN W, LING L N, LI R X, et al. Thermal-pressure matching law of adiabatic, near-isothermal compressed-air coupled energy-storage process [J]. Energy storage science and technology, 2023, 12(11): 3425-3434. DOI:  10.19799/j.cnki.2095-4239.2023.0374.
[8] 郑开云, 池捷成, 张学锋. 耦合抽水蓄能的压缩空气储能电站概念研究 [J]. 南方能源建设, 2023, 10(2): 18-25. DOI:  10.16516/j.gedi.issn2095-8676.2023.02.003.

ZHENG K Y, CHI J C, ZHANG X F. Concept research of compressed air energy storage power plant coupled with pumped hydro storage [J]. Southern energy construction, 2023, 10(2): 18-25. DOI:  10.16516/j.gedi.issn2095-8676.2023.02.003.
[9] 魏志刚. 基于喷雾换热的压缩空气等温膨胀过程优化及试验研究 [D]. 包头: 内蒙古科技大学, 2023. DOI:  10.27724/d.cnki.gnmgk.2023.000175.

WEI Z G. Optimisation and experimental study of compressed air isothermal expansion process based on spray heat transfer [D]. Baotou: Inner Mongolia University of Science and Technology, 2023. DOI:  10.27724/d.cnki.gnmgk.2023.000175.
[10] 孔舒婷. 基于压缩空气储能的综合能源系统优化设计研究 [D]. 北京: 中国建筑科学研究院, 2023. DOI:  10.27513/d.cnki.gzjky.2023.000008.

KONG S T. Research on optimization design of integrated energy system based on compressed air energy storage [D]. Beijing: China Academy of Building Research, 2023. DOI:  10.27513/d.cnki.gzjky.2023.000008.
[11] GUO C, XU Y J, ZHANG X J, et al. Performance analysis of compressed air energy storage systems considering dynamic characteristics of compressed air storage [J]. Energy, 2017, 135: 876-888. DOI:  10.1016/j.energy.2017.06.145.
[12] 张新敬. 压缩空气储能系统若干问题的研究 [D]. 北京: 中国科学院研究生院(工程热物理研究所), 2011.

ZHANG X J. Investigation on compressed air energy storage system [D]. Beijing: Graduate School of Chinese Academy of Sciences (Institute of Engineering Thermophysics), 2011.
[13] CHEN L X, XIE M N, ZHAO P P, et al. A novel isobaric adiabatic compressed air energy storage (IA-CAES) system on the base of volatile fluid [J]. Applied energy, 2018, 210: 198-210. DOI:  10.1016/j.apenergy.2017.11.009.
[14] 韩中合, 周权, 王营营, 等. 先进绝热压缩空气储能(AA-CAES)系统一种结构优化方案 [J]. 太阳能学报, 2016, 37(3): 629-635. DOI:  10.3969/j.issn.0254-0096.2016.03.016.

HAN Z H, ZHOU Q, WANG Y Y, et al. Analysis of two sorts of configurations of AA-CAES system [J]. Acta energiae solaris sinica, 2016, 37(3): 629-635. DOI:  10.3969/j.issn.0254-0096.2016.03.016.
[15] 刘畅, 徐玉杰, 胡珊, 等. 压缩空气储能电站技术经济性分析 [J]. 储能科学与技术, 2015, 4(2): 158-168. DOI:  10.3969/j.issn.2095-4239.2015.02.006.

LIU C, XU Y J, HU S, et al. Techno-economic analysis of compressed air energy storage power plant [J]. Energy storage science and technology, 2015, 4(2): 158-168. DOI:  10.3969/j.issn.2095-4239.2015.02.006.
[16] LUO X, WANG J H, DOONER M, et al. Overview of current development in compressed air energy storage technology [J]. Energy procedia, 2014, 62: 603-611. DOI:  10.1016/j.egypro.2014.12.423.
[17] VENKATARAMANI G, PARANKUSAM P, RAMALINGAM V, et al. A review on compressed air energy storage – a pathway for smart grid and polygeneration [J]. Renewable and sustainable energy reviews, 2016, 62: 895-907. DOI:  10.1016/j.rser.2016.05.002.
[18] 李连生, 杨启超, 赵远扬. 微小型压缩空气储能系统研究 [J]. 流体机械, 2014, 42(3): 24-27. DOI:  10.3969/j.issn.1005-0329.2014.03.006.

LI L S, YANG Q C, ZHAO Y Y. Research on micro-small scale of compressed air energy storage system [J]. Fluid machinery, 2014, 42(3): 24-27. DOI:  10.3969/j.issn.1005-0329.2014.03.006.
[19] 袁照威, 杨易凡. 压缩空气储能技术研究现状及发展趋势 [J]. 南方能源建设, 2024, 11(2): 146-153. DOI:  10.16516/j.ceec.2024.2.14.

YUAN Z W, YANG Y F. Research status and development trend of compressed air energy storage technology [J]. Southern energy construction, 2024, 11(2): 146-153. DOI:  10.16516/j.ceec.2024.2.14.
[20] 王成山, 武震, 杨献莘, 等. 基于微型压缩空气储能的混合储能系统建模与实验验证 [J]. 电力系统自动化, 2014, 38(23): 22-26. DOI:  10.7500/AEPS20131104010.

WANG C S, WU Z, YANG X S, et al. Modeling and verification of hybrid energy storage system based on micro compressed air energy storage [J]. Automation of electric power systems, 2014, 38(23): 22-26. DOI:  10.7500/AEPS20131104010.
[21] KHAMIS A, BADARUDIN Z M, AHMAD A, et al. Development of mini scale compressed air energy storage system [C]//Proceedings of 2011 IEEE Conference on Clean Energy and Technology (CET), Kuala Lumpur, Malaysia, June 27-29, 2011. New York: IEEE, 2011: 151-156. DOI:  10.1109/CET.2011.6041477.
[22] MARTÍNEZ M, MOLINA M G, MERCADO P E. Dynamic performance of compressed air energy storage (CAES) plant for applications in power systems [C]//Proceedings of 2010 IEEE/PES Transmission and Distribution Conference and Exposition: Latin America (T&D-LA), Sao Paulo, Brazil, November 8-10, 2010. New York: IEEE, 2010: 496-503. DOI:  10.1109/TDC-LA.2010.5762928.
[23] 褚晓广, 张承慧, 李珂, 等. 基于涡旋机的新型压缩空气储能系统动态建模与效率分析 [J]. 电工技术学报, 2011, 26(7): 126-132. DOI:  10.19595/j.cnki.1000-6753.tces.2011.07.018.

CHU X G, ZHANG C H, LI K, et al. Dynamic modeling and efficiency analysis of compressed air energy storage system equipped with scroll compressor [J]. Transactions of China electrotechnical society, 2011, 26(7): 126-132. DOI:  10.19595/j.cnki.1000-6753.tces.2011.07.018.
[24] LEMOFOUET S, RUFER A. Hybrid energy storage system based on compressed air and super-capacitors with maximum efficiency point tracking (MEPT) [J]. IEEJ transactions on industry applications, 2006, 126(7): 911-920. DOI:  10.1541/ieejias.126.911.
[25] 郭欢, 徐玉杰, 张新敬, 等. 蓄热式压缩空气储能系统变工况特性 [J]. 中国电机工程学报, 2019, 39(5): 1366-1376. DOI:  10.13334/j.0258-8013.pcsee.180596.

GUO H, XU Y J, ZHANG X J, et al. Off-design performance of compressed air energy storage system with thermal storage [J]. Proceedings of the CSEE, 2019, 39(5): 1366-1376. DOI:  10.13334/j.0258-8013.pcsee.180596.