[1] 李红涛, 王宾, 唐广银. 海上风电场设施技术规范综述 [J]. 南方能源建设, 2019, 6(2): 1-6. DOI:  10.16516/j.gedi.issn2095-8676.2019.02.001.

LIH T, WANGB, TANGG Y. Summary of technical specifications for offshore wind farm facilities [J]. Southern Energy Construction, 2019, 6(2): 1-6. DOI:  10.16516/j.gedi.issn2095-8676.2019.02.001.
[2] 周成, 王志永, 程海刚. 29.6 m高速双体风电运维船有限元强度分析 [J]. 江苏船舶, 2020, 37(3): 8-10+5. DOI:  10.19646/j.cnki.32-1230.2020.03.003.

ZHOUC, WANGZ Y, CHENGH G. Finite element strength analysis of a 29.6m high-speed catamaran wind power operation and maintenance ship [J]. Jiangsu Ship, 2020, 37(3): 8-10+5. DOI:  10.19646/j.cnki.32-1230.2020.03.003.
[3] 高汪涛. 某深拖母船阻力性能研究与船型优化 [D]. 上海: 上海交通大学, 2019. DOI: 10. 27307/d.cnki.gsjtu.2019.000587.

GAOW T. Research on resistance performance of a deep-towing mothership and its hull form optimization [D]. Shanghai: Shanghai Jiao Tong University, 2019. DOI:  10.27307/d.cnki.gsjtu.2019.000587.
[4] 李纳, 刘和炜, 张彬. 基于STAR-CCM+的鱿鱼钓船波浪增阻数值计算与球鼻艏选型分析 [J]. 中国渔业质量与标准, 2021, 11(3): 25-31. DOI:  10.3969/j.issn.2095-1833.2021.03.004.

LIN, LIUH W, ZHANGB. Numerical calculation of wave-added resistance and selection analysis of bulbous bow for squid jigging boat based on STAR-CCM+ [J]. Chinese Fishery Quality and Standards, 2021, 11(3): 25-31. DOI:  10.3969/j.issn.2095-1833.2021.03.004.
[5] 陈涛, 崔健, 陆泽华, 等.艉压浪板与艉垂直板对浅吃水高速船快速性的影响比较[J].上海船舶运输科学研究所学报, 2019, 42(3): 1-5. DOI:  10.3969/j.issn.1674-5949.2019.03.001.

CHENT, CUIJ, LUZ H, et al. Comparison of the effects of stern flap and stern vertical plate on the speed and resistance of high speed ships with shallow draft[J]. Journal of Shanghai Scientific Research Institute of Shipping, 2019, 42(3): 1-5. DOI:  10.3969/j.issn.1674-5949.2019.03.001.
[6] 李冬琴, 李鹏, 章易立, 等. 分段式尾压浪板对高速船阻力性能的影响 [J].船舶工程, 2019, 41(7): 37-43. DOI:  10.13788/j.cnki.cbgc.2019.07.07.

LID Q, LIP, ZHANGY L, et al. Influence of segmented stern flap on resistance performance of high speed craft [J]. Ship Engineering, 2019, 41(7): 37-43. DOI:  10.13788/j.cnki.cbgc.2019.07.07.
[7] 于兴鹏. 海上双体风电运维船总体设计的关键技术研究 [D]. 镇江: 江苏科技大学, 2020. DOI:  10.27171/d.cnki.ghdcc.2020.000067.

YUX P. Research on the key technologies of the overall design of offshore catamaran wind power operation and maintenance ship [D]. Zhenjiang: Jiangsu University of Science and Technology, 2020. DOI:  10.27171/d.cnki.ghdcc.2020.000067.
[8] 许媛媛, 吕彩霞, 李建, 等. 基于CFD的中低速Wigley船模黏性阻力 [J]. 船舶工程, 2019, 41(9): 36-40+99. DOI:  10.13788/j.cnki.cbgc.2019.09.08.

XUY Y, LÜC X, LIJ, et al. Viscous resistance of medium and low speed wigley ship model based on CFD [J]. Ship Engineering, 2019, 41(9): 36-40+99. DOI:  10.13788/j.cnki.cbgc.2019.09.08.
[9] 张明霞, 李岗, 王志豪, 等. 基于STAR-CCM+的V型无压载水船阻力性能研究 [J]. 船舶工程, 2020, 42(3): 47-55+134. DOI:  10.13788/j.cnki.cbgc.2020.03.09.

ZHANGM X, LIG, WANGZ H, et al. Research on resistance performance of V-shape non-ballast water ship based on STAR-CCM+ [J]. Ship Engineering, 2020, 42(3): 47-55+134. DOI:  10.13788/j.cnki.cbgc.2020.03.09.
[10] 刘飞. 基于CFD方法的破损船舶阻力预报研究 [D]. 哈尔滨: 哈尔滨工程大学, 2021. DOI: 10. 27060/d.cnki.ghbcu.2021.000911.

LIUF. Study on resistance prediction of damaged ship based on CFD method [D]. Harbin: Harbin Engineering University, 2021. DOI: 10. 27060/d.cnki.ghbcu.2021.000911.
[11] 高天敏. 双体风电运维船尾下沉与阻力及耐波性综合研究[D]. 镇江: 江苏科技大学, 2020. DOI:  10.27171/d.cnki.ghdcc.2020.000390.

GAOT M. The comprehensive research on sinking, resistance and wave resistance of the catamaran wind power operation and maintenance ship [D]. Zhenjiang: Jiangsu University of Science and Technology, 2020. DOI:  10.27171/d.cnki.ghdcc.2020.000390.
[12] 方静, 黄晶, 冯佰威, 等. 基于CFD的超小型双体无人船总体设计 [J]. 船舶工程, 2018, 40(5): 1-3+56. DOI:  10.13788/j.cnki.cbgc.2018.05.001.

FANGJ, HUANGJ, FENGB W, et al. General design of unmanned ultra-small catamaran ship based on CFD [J]. Ship Engineering, 2018, 40(5): 1-3+56. DOI:  10.13788/j.cnki.cbgc.2018.05.001.
[13] 陈悦, 胡冬芳, 杨铃玉, 等. 三体风电运维船主侧体特征参数及阻力性能研究 [J]. 中国造船, 2016, 57(4):80-86. DOI:  10.3969/j.issn.1000-4882.2016.04.009.

CHENY, HUD F, YANGL Y, et al. Research on parameters of main and side hull and resistance performance of a transportation and maintenance trimaran [J]. Shipbuilding of China, 2016, 57(4): 80-86. DOI:  10.3969/j.issn.1000-4882.2016.04.009.
[14] 杨培青, 管义锋. 基于CFD的三维船体摩擦阻力预报与验证 [J]. 船舶工程, 2007, 29(3): 61-64. DOI:  10.3969/j.issn.1000-6982.2007.03.012.

YANGP Q, GUANY F. Prediction and validation of frictional resistance of 3-D hull based on CFD [J]. Ship Engineering, 2007, 29(3): 61-64. DOI:  10.3969/j.issn.1000-6982.2007.03.012.
[15] 钱浩, 宋科委, 郭春雨, 等. 喷水推进器流道对船舶阻力性能的影响 [J]. 中国舰船研究, 2017, 12(2): 22-29. DOI:  10.3969/j.issn.1673-3185.2017.02.003.

QIANH, SONGK W, GUOC Y, et al. Influence of waterjet duct on ship's resistance performance [J]. Chinese Journal of Ship Research, 2017, 12(2): 22- 29. DOI:  10.3969/j.issn.1673-3185.2017.02.003.
[16] 邵世明, 王云才. 尾压浪板对高速艇阻力性能的影响 [J]. 中国造船, 1981(1): 31-41.

SHAOS M, WANGY C. The effects of stern trimming flap on resistance of high speed craft [J]. Shipbuilding of China, 1981(1): 31-41.
[17] 孙聪, 宋科委, 尹晓辉, 等. 两种尾部附体在过渡型船舶上的对比研究 [J]. 中国造船, 2019, 60(1): 30-39. DOI:  10.3969/j.issn.1000-4882.2019.01.004.

SUNC, SONGK W, YINX H, et al. Comparative study of two types of stern appendages on semi-displacement ships [J]. Shipbuilding of China, 2019, 60(1): 30-39. DOI:  10.3969/j.issn.1000-4882.2019.01.004.