[1] 吴子怡, 周唯. 滇西北至广东特高压直流送端换流站融冰方案技术经济分析 [J]. 南方能源建设, 2017, 4(3): 131-135. DOI:  10.16516/j.gedi.issn2095-8676.2017.03.024.

WU Z Y, ZHOU W. Selection analysis of Northwest Yunnan to Guangdong EHV DC converter station's ice melting scheme [J]. Southern energy construction, 2017, 4(3): 131-135. DOI:  10.16516/j.gedi.issn2095-8676.2017.03.024.
[2] 侯婷, 刘涛, 杨柳, 等. 新一代高性能柔性直流背靠背技术及工程应用 [J]. 南方能源建设, 2023, 10(5): 1-8. DOI:  10.16516/j.gedi.issn2095-8676.2023.05.001.

HOU T, LIU T, YANG L, et al. New generation high-performance VSC-HVDC back-to-back technology and application in project [J]. Southern energy construction, 2023, 10(5): 1-8. DOI:  10.16516/j.gedi.issn2095-8676.2023.05.001.
[3] 庄志翔, 郭剑, 张珏, 等. ±500 kV直流线路工程多冰区与结构工程量关系研究 [J]. 南方能源建设, 2022, 9(1): 96-102. DOI:  10.16516/j.gedi.issn2095-8676.2022.01.014.

ZHUANG Z X, GUO J, ZHANG J, et al. Research on the relationship between structural engineering quantitie and multi ice area of ± 500 kV DC transmission line engineering [J]. Southern energy construction, 2022, 9(1): 96-102. DOI:  10.16516/j.gedi.issn2095-8676.2022.01.014.
[4] 闵光云, 赵鑫, 刘小会. 架空覆冰输电线路舞动研究进展 [J]. 南方能源建设, 2023, 10(5): 116-128. DOI:  10.16516/j.gedi.issn2095-8676.2023.05.015.

MIN G Y, ZHAO X, LIU X H. Research progress of galloping of overhead iced transmission lines [J]. Southern energy construction, 2023, 10(5): 116-128. DOI:  10.16516/j.gedi.issn2095-8676.2023.05.015.
[5] 国家能源局. 重覆冰架空输电线路设计技术规程: DL/T 5440—2020 [S]. 北京: 中国计划出版社, 2020.

National Energy Administration. Technical specification for the design of overhead transmission line in medium and heavy icing area: DL/T 5440—2020 [S]. Beijing: China Planning Press, 2020.
[6] 国家能源局. 直流融冰系统设计技术规程: DL/T 5511—2016 [S]. 北京: 中国计划出版社, 2016.

National Energy Administration. Technical code for design of DC de-icing system: DL/T 5511—2016 [S]. Beijing: China Planning Press, 2016.
[7] 饶宏, 傅闯, 朱功辉, 等. 南方电网直流融冰技术的研究与应用 [J]. 南方电网技术, 2008, 2(6): 7-12. DOI:  10.3969/j.issn.1674-0629.2008.06.002.

RAO H, FU C, ZHU G H, et al. Research & application of DC-based deicing technology in CSG [J]. Southern power system technology, 2008, 2(6): 7-12. DOI:  10.3969/j.issn.1674-0629.2008.06.002.
[8] 谢惠藩, 朱坚, 唐金昆, 等. 直流融冰装置理论与应用的若干问题探讨 [J]. 南方电网技术, 2013, 7(3): 13-20. DOI:  10.3969/j.issn.1674-0629.2013.03.003.

XIE H F, ZHU J, TANG J K, et al. Investigation on several issues of theory and application of DC de-icers [J]. Southern power system technology, 2013, 7(3): 13-20. DOI:  10.3969/j.issn.1674-0629.2013.03.003.
[9] 常浩, 石岩, 殷威扬, 等. 交直流线路融冰技术研究 [J]. 电网技术, 2008, 32(5): 1-6.

CHANG H, SHI Y, YIN W Y, et al. Ice-melting technologies for HVAC and HVDC transmission line [J]. Power system technology, 2008, 32(5): 1-6.
[10] 陈亦平, 刘文涛, 和识之, 等. 直流融冰装置在南方电网的应用分析 [J]. 南方电网技术, 2011, 5(4): 74-77. DOI:  10.3969/j.issn.1674-0629.2011.04.018.

CHEN Y P, LIU W T, HE S Z, et al. Analysis on the application of DC de-icer in China southern power grid [J]. Southern power system technology, 2011, 5(4): 74-77. DOI:  10.3969/j.issn.1674-0629.2011.04.018.
[11] 陈鹤, 朱旭东, 辛业春. 覆冰输电线路除冰技术研究综述 [J]. 吉林电力, 2022, 50(6): 30-34,48. DOI:  10.16109/j.cnki.jldl.2022.06.016.

CHEN H, ZHU X D, XIN Y C. Summary on ice melting technology of ice-covered transmission lines [J]. Jilin electric power, 2022, 50(6): 30-34,48. DOI:  10.16109/j.cnki.jldl.2022.06.016.
[12] 班国邦, 吕黔苏, 马晓红, 等. 直流融冰技术应用比较研究 [J]. 电力大数据, 2021, 24(9): 83-92. DOI:  10.19317/j.cnki.1008-083x.2021.09.011.

BAN G B, LÜ Q S, MA X H, et al. Comparative study on application of DC ice-melting technology [J]. Power systems and big data, 2021, 24(9): 83-92. DOI:  10.19317/j.cnki.1008-083x.2021.09.011.
[13] 宋宏佺. 输电线路导线及地线复用新型直流融冰装置技术研究综述 [J]. 南方能源建设, 2018, 5(3): 72-76. DOI:  10.16516/j.gedi.issn2095-8676.2018.03.011.

SONG H Q. Overview on technology of new model DC ice-melting device for phase wire and ground wire of transmission line [J]. Southern energy construction, 2018, 5(3): 72-76. DOI:  10.16516/j.gedi.issn2095-8676.2018.03.011.
[14] 中国电力工程顾问集团中南电力设计院有限公司. 高压直流输电设计手册 [M]. 北京: 中国电力出版社, 2017.

Central Southern China Electric Power Design Institute Co. , Ltd. , of China Power Engineering Consulting Group. High-voltage direct current design manual [M]. Beijing: China Electric Power Press, 2017.
[15] 庞广恒, 曾南超, 杨万开. 特高压直流系统融冰运行方式试验与工程调试 [J]. 电网技术, 2014, 38(1): 22-27. DOI:  10.13335/j.1000-3673.pst.2014.01.004.

PANG G H, ZENG N C, YANG W K. Test of de-icing operating mode for UHVDC power transmission system and its practice in engineering commissioning [J]. Power system technology, 2014, 38(1): 22-27. DOI:  10.13335/j.1000-3673.pst.2014.01.004.
[16] 杨万开, 吴庆范, 庞广恒. 特高压直流融冰方式控制策略及试验分析 [J]. 电网技术, 2015, 39(11): 3313-3319. DOI:  10.13335/j.1000-3673.pst.2015.11.045.

YANG W K, WU Q F, PANG G H. Analysis of control strategy and test for de-icing operation mode of UHVDC project [J]. Power system technology, 2015, 39(11): 3313-3319. DOI:  10.13335/j.1000-3673.pst.2015.11.045.
[17] 赵婉君. 高压直流输电工程技术(2版) [M]. 北京: 中国电力出版社, 2011.

ZHAO W J. HVDC transmission engineering technology (2nd ed. ) [M]. Beijing: China Electric Power Press, 2011.
[18] 束洪春, 赵红芳, 张旭, 等. 昆柳龙混合直流工程送端换流站电气主接线可靠性分析 [J]. 电力系统自动化, 2021, 45(22): 115-123. DOI:  10.7500/AEPS20210308002.

SHU H C, ZHAO H F, ZHANG X, et al. Reliability analysis of main electrical connection for sending-end converter station in Kunliulong hybrid DC project of China [J]. Automation of electric power systems, 2021, 45(22): 115-123. DOI:  10.7500/AEPS20210308002.
[19] REEVE J. Multiterminal HVDC power systems [J]. IEEE transactions on power apparatus and systems, 1980, PAS-99(2): 729-737. DOI:  10.1109/TPAS.1980.319666.
[20] JUHLIN L E, LISS G, EKSTROM A. Parallel connection of convertors for HVDC transmission [J]. IEEE transactions on power apparatus and systems, 1978, PAS-97(3): 714-724. DOI:  10.1109/TPAS.1978.354542.