[1] 国家能源局. 陆上风电场工程风电机组基础设计规范: NB/T 10311—2019 [S]. 北京: 中国电力出版社, 2020.

National Energy Administration. Code for design of wind turbine foundations for onshore wind power projects: NB/T 10311—2019 [S]. Beijing: China Electric Power Press, 2020.
[2] 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. 混凝土结构设计规范: GB 50010—2010 [S]. 北京: 中国建筑工业出版社, 2011.

Ministry of Housing and Urban-Rural Development of the People's Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Code for design of concrete structures: GB 50010—2010 [S]. Beijing: China Architecture & Building Press, 2011.
[3] 中华人民共和国交通运输部. 公路钢筋混凝土及预应力混凝土桥涵设计规范: JTG 3362—2018 [S]. 北京: 人民交通出版社, 2018.

Ministry of Transport of the People's Republic of China. Specifications for design of highway reinforced concrete and prestressed concrete bridges and culverts: JTG 3362—2018 [S]. Beijing: People's Communications Press, 2018.
[4] 王泽国, 卢红前, 吉春明, 等. 沿海地区风电场预应力锚栓基础受力特性有限元研究 [J]. 武汉大学学报(工学版), 2018, 51(增刊1): 149-156.

WANG Z G, LU H Q, JI C M, et al. Finite element study of mechanical behavior of prestressed anchor bolt foundation in coastal wind turbine farm [J]. Engineering Journal of Wuhan University, 2018, 51(Suppl.1): 149-156.
[5] 刘嫔, 张立英, 崔振磊, 等. 风电机组预应力锚栓基础局部承压分析 [J]. 西北水电, 2015(4): 99-101. DOI:  10.3969/j.issn.1006-2610.2015.04.025.

LIU P, ZHANG L Y, CUI Z L, et al. Analysis on local pressure of prestressed anchor bolts foundation of wind turbine generator [J]. Northwest hydropower, 2015(4): 99-101. DOI:  10.3969/j.issn.1006-2610.2015.04.025.
[6] 郑阳. 圆形扩展式风机基础钢筋设计优化分析 [J]. 南方能源建设, 2022, 9(增刊1): 76-82. DOI:  10.16516/j.gedi.issn2095-8676.2022.S1.012.

ZHENG Y. Design optimization for the reinforcement of wind turbine foundation [J]. Southern energy construction, 2022, 9(Suppl.1): 76-82. DOI:  10.16516/j.gedi.issn2095-8676.2022.S1.012.
[7] 吴强, 贺广零, 邹庆水. 预应力锚栓风机基础设计局压承载力探讨 [J]. 工程建设与设计, 2022(3): 32-35. DOI:  10.13616/j.cnki.gcjsysj.2022.02.008.

WU Q, HE G L, ZOU Q S. Discussion on local compression bearing capacity of prestressed bolt wind turbine foundations design [J]. Construction & design for engineering, 2022(3): 32-35. DOI:  10.13616/j.cnki.gcjsysj.2022.02.008.
[8] 梅毕祥, 杨敏. 陆上风机圆形基础底板承载力计算方法研究 [J]. 港工技术, 2016, 53(2): 50-54. DOI:  10.16403/j.cnki.ggjs20160213.

MEI B X, YANG M. Calculation method for bearing capacity of circular foundation slab supporting onshore wind turbine [J]. Port engineering technology, 2016, 53(2): 50-54. DOI:  10.16403/j.cnki.ggjs20160213.
[9] 许新勇, 刘峥, 张迪. 兆瓦级风机塔架基础地基力学特性研究 [J]. 水力发电, 2012, 38(12): 74-76. DOI:  10.3969/j.issn.0559-9342.2012.12.023.

XU X Y, LIU Z, ZHANG D. Study on ground mechanical characteristics of tower foundation of wind turbine with capacity more than one megawatt [J]. Water power, 2012, 38(12): 74-76. DOI:  10.3969/j.issn.0559-9342.2012.12.023.
[10] 蒋莉, 许新勇, 李静, 等. 风机塔架基础接触非线性分析 [J]. 水电能源科学, 2011, 29(8): 164-166. DOI:  10.3969/j.issn.1000-7709.2011.08.049.

JIANG L, XU X Y, LI J, et al. Contact nonlinear analysis of tower foundation of wind turbine generator [J]. Water resources and power, 2011, 29(8): 164-166. DOI:  10.3969/j.issn.1000-7709.2011.08.049.
[11] 张宁, 郭春雷, 孙建勋. 风机基础结构设计与计算 [J]. 水利水电工程设计, 2018, 37(1): 39-41. DOI:  10.3969/j.issn.1007-6980.2018.01.018.

ZHANG N, GUO C L, SUN J X. Structural design and calculation of fan base [J]. Design of water resources & hydroelectric engineering, 2018, 37(1): 39-41. DOI:  10.3969/j.issn.1007-6980.2018.01.018.
[12] 肖珍, 易祺, 邓小勇. 有限元方法在风机基础设计中的应用 [J]. 低温建筑技术, 2020, 42(11): 62-65. DOI:  10.13905/j.cnki.dwjz.2020.11.016.

XIAO Z, YI Q, DENG X Y. Application of finite element method in design of foundation of wind turbine [J]. Low temperature architecture technology, 2020, 42(11): 62-65. DOI:  10.13905/j.cnki.dwjz.2020.11.016.
[13] 迟俊德, 刘殿忠, 赵凤瑞. 风机基础结构有限元分析 [J]. 吉林地质, 2011, 30(1): 151-155. DOI:  10.3969/j.issn.1001-2427.2011.01.036.

CHI J D, LIU D Z, ZHAO F R. Finite element analysis of wind generator foundation structure [J]. Jilin geology, 2011, 30(1): 151-155. DOI:  10.3969/j.issn.1001-2427.2011.01.036.
[14] 张力, 陈珂, 元国凯, 等. 基于马尔科夫矩阵的灌浆连接段疲劳性能研究 [J]. 南方能源建设, 2022, 9(增刊2): 6-10. DOI:  10.16516/j.gedi.issn2095-8676.2022.S2.002.

ZHANG L, CHEN K, YUAN G K, et al. Research on fatigue performance of grouted connections based on Markov matrix [J]. Southern energy construction, 2022, 9(Suppl.2): 6-10. DOI:  10.16516/j.gedi.issn2095-8676.2022.S2.002.
[15] 刘学新. 风机基础承台底面形式的优化分析 [J]. 吉林电力, 2012, 40(4): 25-27. DOI:  10.3969/j.issn.1009-5306.2012.04.008.

LIU X X. Optimization analysis of wind turbine base supporting bottom type [J]. Jilin electric power, 2012, 40(4): 25-27. DOI:  10.3969/j.issn.1009-5306.2012.04.008.
[16] 董其明, 于恺, 崔国桥. 风机基础局压受力钢筋的配置及分析 [J]. 水电科技, 2023, 6(2) . DOI:  10.33142/hst.v6i2.8312.

DONG Q M, YU K, CUI G Q. Configuration and analysis of reinforcement bar under local pressure of fan foundation [J]. Journal of hydropower science and technology, 2023, 6(2) . DOI:  10.33142/hst.v6i2.8312.
[17] 孙杰, 周晓智, 袁磊. 基于MATLAB的圆形基础附加应力的数值积分求解 [J]. 工业建筑, 2014, 44(增刊1): 847-849,856. DOI:  10.13204/j.gyjz2014.s1.294.

SUN J, ZHOU X Z, YUAN L. The numerical integration on additional stress in soil of circular foundation based on MATLAB [J]. Industrial construction, 2014, 44(Suppl.1): 847-849,856. DOI:  10.13204/j.gyjz2014.s1.294.
[18] 胡洪龙, 谈至明. 圆形均布荷载下铺面结构层应力的水平向分布规律 [J]. 同济大学学报(自然科学版), 2014, 42(12): 1868-1872. DOI:  10.11908/j.issn.0253-374x.2014.12.013.

HU H L, TAN Z M. Horizontal distribution of pavement structure layer stress under a circular uniform load [J]. Journal of Tongji University (natural science), 2014, 42(12): 1868-1872. DOI:  10.11908/j.issn.0253-374x.2014.12.013.
[19] 石中平. 垂直均布荷载矩形基础地基任意点附加应力系数公式推导 [J]. 成都理工大学学报(自然科学版), 2015, 42(2): 244-256. DOI:  10.3969/j.issn.1671-9727.2015.02.14.

SHI Z P. Formula derivation of additional stress coefficient at any point in rectangular foundation subsoil under vertical even load [J]. Journal of Chengdu University of Technology (science & technology edition), 2015, 42(2): 244-256. DOI:  10.3969/j.issn.1671-9727.2015.02.14.
[20] 赵军卫, 郑文忠. 预应力混凝土局压承载力计算及端部间接钢筋的配置问题 [J]. 工业建筑, 2007, 37(11): 47-52. DOI:  10.13204/j.gyjz200711013.

ZHAO J W, ZHENG W Z. Some problems on calculation of local compression load bearing capacity and placing of indirect reinforcement in end zone of prestressed concrete [J]. Industrial construction, 2007, 37(11): 47-52. DOI:  10.13204/j.gyjz200711013.
[21] 尉尚民, 蔡绍怀, 焦占拴. 套箍混凝土的局部承压强度 [C]//中国建筑学会建筑结构委员会混凝土结构学组, 清华大学土木工程系. 约束与普通混凝土强度理论及应用学术讨论会论文集, 烟台, 1987-10-26. 北京: 中国建筑学会建筑结构委员会, 1987: 72-80.

WEI S M, CAI S H, JIAO Z S. Local compressive strength of hooped concrete [C]//Concrete Structure Group of the Architectural Structure Committee of the Chinese Society of Architecture, Department of Civil Engineering, Tsinghua University. Proceedings of the Symposium on the Theory and Application of Confined and Ordinary Concrete Strength, Yantai, October 26, 1987. Beijing: Building Structure Committee of Architectural Society of China, 1987: 72-80.
[22] 嵇蕾. 预应力筋约束混凝土局部受压承载力研究 [D]. 长春: 吉林建筑大学, 2014.

JI L. Study on bearing capacity of the local compression concrete constrained by prestressed tendon [D]. Changchun: Jilin Jianzhu University, 2014.
[23] 徐芝纶. 弹性力学(5版) [M]. 北京: 高等教育出版社, 2016.

XU Z L. Elasticity mechanics (5th ed. ) [M]. Beijing: Higher Education Press, 2016.