[1] |
SANCHEZ D L, KAMMEN D M. A commercialization strategy for carbon-negative energy [J]. Nature Energy, 2016, 1(1): 15002. DOI: 10.1038/nenergy.2015.2. |
[2] |
DEL POZO C A, CLOETE S, CLOETE J H, et al. The potential of chemical looping combustion using the gas switching concept to eliminate the energy penalty of CO2 capture [J]. International Journal of Greenhouse Gas Control, 2019, 83: 265-281. DOI: 10.1016/j.ijggc.2019.01.018. |
[3] |
AHMED U, ZAHID U, LEE Y. Process simulation and integration of IGCC systems for H2/syngas/electricity generation with control on CO2 emissions [J]. International Journal of Hydrogen Energy, 2019, 44(14): 7137-7148. DOI: 10.1016/j.ijhydene.2019.01.276. |
[4] |
谢浩, 张忠孝, 李振忠, 等. IGCC常规岛系统优化设计研究 [J]. 洁净煤技术, 2011, 17(6): 30-35. DOI: 10.3969/j.issn.1006-6772.2011.06.010.
XIE H, ZHANG Z X, LI Z Z, et al. Study on optimization design of conventional island system in IGCC [J]. Clean Coal Technology, 2011, 17(6): 30-35. DOI: 10.3969/j.issn.1006-6772.2011.06.010. |
[5] |
KAPETAKI Z, AHN H, BRANDANI S. Detailed process simulation of pre-combustion IGCC plants using coal-slurry and dry coal gasifiers [J]. Energy Procedia, 2013, 37: 2196-2203. DOI: 10.1016/j.egypro.2013.06.099. |
[6] |
CAI L L, WU X Y, ZHU X F, et al. High-performance oxygen transport membrane reactors integrated with IGCC for carbon capture [J]. Aiche Journal, 2020, 66(7): e164247. DOI: 10.1002/aic.16247. |
[7] |
DESCAMPS C, BOUALLOU C, KANNICHE M. Efficiency of an integrated gasification combined cycle (IGCC) power plant including CO2 removal [J]. Energy, 2008, 33(6): 874-881. DOI: 10.1016/j.energy.2007.07.013. |
[8] |
毛健雄. 燃煤耦合生物质发电 [J]. 分布式能源, 2017, 2(5): 47-54. DOI: 10.16513/j.cnki.10-1427/tk.2017.05.008.
MAO J X. Co-firing biomass with coal for power generation [J]. Distributed Energy, 2017, 2(5): 47-54. DOI: 10.16513/j.cnki.10-1427/tk.2017.05.008. |
[9] |
ABAIMOV N A, OSIPOV P V, RYZHKOV A F. Experimental and computational study and development of the bituminous coal entrained-flow air-blown gasifier for IGCC [J]. Journal of Physics:Conference series, 2016, 754(11): 112001. DOI: 10.1088/1742-6596/754/11/112001. |
[10] |
GIUFFRIDA A, MOIOLI S, ROMANO M C, et al. Lignite-fired air-blown IGCC systems with pre-combustion CO2 capture [J]. International Journal of Energy Research, 2016, 40(6): 831-845. DOI: 10.1002/er.3488. |
[11] |
WANG H R, YAN J B, YUAN Y. Thermal and environmental performance of IGCC system with wood dust as feed [J]. Journal of Chemical and Pharmaceutical Research, 2014, 6(6): 2769-2778. |
[12] |
OKEKE I J, ADAMS II T A. Systems Design of a petroleum coke IGCC power plant: technical, economic, and life cycle perspectives [J]. Computer Aided Chemical Engineering, 2019, 47: 163-168. DOI: 10.1016/B978-0-12-818597-1.50026-6. |
[13] |
SUBRAMANYAM V, GORODETSKY A. Integrated gasification combined cycle (IGCC) technologies [M]. Cambridge: Woodhead Publishing, 2017. |
[14] |
周贤, 许世森, 史绍平, 等. 回收余热的热电联产IGCC电站研究 [J]. 中国电机工程学报, 2014, 34(增刊1): 100-104. DOI: 10.13334/j.0258-8013.pcsee.2014.S.014.
ZHOU X, XU S S, SHI S P, et al. Study on heat and power cogeneration IGCC plant with waste heat recovery [J]. Proceedings of the CSEE, 2014, 34(Supp. 1): 100-104. DOI: 10.13334/j.0258-8013.pcsee.2014.S.014. |
[15] |
李召召, 代正华, 林慧丽, 等. IGCC–甲醇多联产系统节能分析 [J]. 中国电机工程学报, 2012, 32(20): 1-7. DOI: 10.13334/j.0258-8013.pcsee.2012.20.001.
LI Z Z, DAI Z H, LIN H L, et al. Analysis of energy saving of IGCC-methanol polygeneration systems [J]. Proceedings of the CSEE, 2012, 32(20): 1-7. DOI: 10.13334/j.0258-8013.pcsee.2012.20.001. |
[16] |
袁铁江, 胡克林, 关宇航, 等. 风电–氢储能与煤化工多能耦合系统及其氢储能子系统的EMR建模 [J]. 高电压技术, 2015, 41(7): 2156-2164. DOI: 10.13336/j.1003-6520.hve.2015.07.006.
YUAN T J, HU K L, GUAN Y H, et al. Modeling on hydrogen producing progress in EMR based wind power-hydrogen energy storage and coal chemical pluripotent coupling system [J]. High Voltage Engineering, 2015, 41(7): 2156-2164. DOI: 10.13336/j.1003-6520.hve.2015.07.006. |
[17] |
TAPAN D, MATT F. Technical-Coal Gasification Technologies Subtopic d: Hybrid Integrated Concepts for IGCC (with CCS) and Non-Biomass Renewable Energy (e. g. Solar, Wind) [R]. Lancaster: Advanced Cooling Technologies, Inc., 2014. |
[18] |
杨承, 王旭升, 张驰, 等. 太阳能与压缩空气耦合储能的燃气轮机CCHP系统特性 [J]. 中国电机工程学报, 2017, 37(18): 5350-5358. DOI: 10.13334/J.0258-8013.PCSEE.161374.
YANG C, WANG X S, ZHANG C, et al. Performances of gas turbine-based CCHP system combined with solar and compressed air energy storage [J]. Proceedings of the CSEE, 2017, 37(18): 5350-5358. DOI: 10.13334/J.0258-8013.PCSEE.161374. |
[19] |
UMAR M, MOORE S V, MEREDITH J S, et al. Aspen-based performance and energy modeling frameworks [J]. Journal of Parallel and Distributed Computing, 2018, 120: 222-236. DOI: 10.1016/j.jpdc.2017.11.005. |
[20] |
CHI J L, LI K Y, ZHANG S J, et al. Process simulation and integration of IGCC systems with novel mixed ionic and electronic conducting membrane-based water gas shift membrane reactors for CO2 capture [J]. International Journal of Hydrogen Energy, 2020, 45(27): 13884-13898. DOI: 10.1016/j.ijhydene.2020.03.138. |
[21] |
SCHWEIGER G, HEIMRATH R, FALAY B, et al. District energy systems: Modelling paradigms and general-purpose tools [J]. Energy, 2018, 164: 1326-1340. DOI: 10.1016/j.energy.2018.08.193. |
[22] |
马泉. 基于Ebsilon的NGCC机组热力系统性能监测与优化分析 [D]. 南京: 东南大学, 2018.
MA Q. Performance monitoring and optimization analysis of NGCC unit thermodynamic system based on Ebsilon [D]. Nanjing: Southeast University, 2018. |
[23] |
陈洪溪, 朱志劼. 带CO2捕捉的IGCC系统热力性能研究 [J]. 发电设备, 2010, 24(6): 405-408. DOI: 10.3969/j.issn.1671-086X.2010.06.004.
CHEN H X, ZHU Z J. Study on the IGCC system using CO2 capture technology [J]. Power Equipment, 2010, 24(6): 405-408. DOI: 10.3969/j.issn.1671-086X.2010.06.004. |
[24] |
张琨, 李寒旭. 干煤粉气流床气化过程数学模型的建立及求解 [J]. 广东化工, 2012, 39(4): 277-278, 280. DOI: 10.3969/j.issn.1007-1865.2012.04.149.
ZHANG K, LI H X. Development and solution of mathematical model for entrained-flow pulverized coal gasification process [J]. Guangdong Chemical Industry, 2012, 39(4): 277-278, 280. DOI: 10.3969/j.issn.1007-1865.2012.04.149. |
[25] |
AHMED U, KIM C, ZAHID U, et al. Integration of IGCC and methane reforming process for power generation with CO2 capture [J]. Chemical Engineering and Processing: Process Intensification, 2017, 111: 14-24. DOI: 10.1016/j.cep.2016.10.020. |
[26] |
HAN L, DENG G Y, LI Z, et al. Integration optimisation of elevated pressure air separation unit with gas turbine in an IGCC power plant [J]. Applied Thermal Engineering, 2017, 110: 1525-1532. DOI: 10.1016/j.applthermaleng.2016.09.059. |
[27] |
SHI B, WU E, WU W, et al. Multi-objective optimization and exergoeconomic assessment of a new chemical-looping air separation system [J]. Energy Conversion and Management, 2018, 157: 575-586. DOI: 10.1016/j.enconman.2017.12.030. |
[28] |
SHI B, WEN F, WU W. Performance evaluation of air-blown IGCC polygeneration plants using chemical looping hydrogen generation and methanol synthesis loop [J]. Energy, 2020, 200: 117564. DOI: 10.1016/j.energy.2020.117564. |
[29] |
SHI B, XU W, WU E, et al. Novel design of integrated gasification combined cycle (IGCC) power plants with CO2 capture [J]. Journal of Cleaner Production, 2018, 195: 176-186. DOI: 10.1016/j.jclepro.2018.05.152. |
[30] |
DEL POZO C A, CLOETE S, CLOETE J H, et al. The oxygen production pre-combustion (OPPC) IGCC plant for efficient power production with CO2 capture [J]. Energy Conversion and Management, 2019, 201: 112109. DOI: 10.1016/j.enconman.2019.112109. |
[31] |
YOON S Y, CHOI B S, AHN J H, et al. Improvement of integrated gasification combined cycle performance using nitrogen from the air separation unit as turbine coolant [J]. Applied Thermal Engineering, 2019, 151: 163-175. DOI: 10.1016/j.applthermaleng.2019.01.110. |
[32] |
DEL POZO C A, CLOETE S, CHIESA P, et al. Integration of gas switching combustion and membrane reactors for exceeding 50% efficiency in flexible IGCC plants with near-zero CO2 emissions [J]. Energy Conversion and Management:X, 2020, 7: 100050. doi: 10.1016/j.ecmx.2020.100050 |
[33] |
SHAIKH A R, WANG Q H, FENG Y, et al. Thermodynamic analysis of 350 MWe coal power plant based on calcium looping gasification with combined cycle [J]. International Journal of Greenhouse Gas Control, 2021, 110: 103439. DOI: 10.1016/j.ijggc.2021.103439. |