[1] 韦媚媚, 项定先. 储能技术应用与发展趋势 [J]. 工业安全与环保, 2023, 49(增刊1): 4-12. DOI:  10.3969/j.issn.1001-425X.2023.z1.002.

WEI M M, XIANG D X. Application and development trend of energy storage [J]. Industrial safety and environmental protection, 2023, 49(Supp1.): 4-12. DOI:  10.3969/j.issn.1001-425X.2023.z1.002.
[2] 夏焱, 万继方, 李景翠, 等. 重力储能技术研究进展 [J]. 新能源进展, 2022, 10(3): 258-264. DOI:  10.3969/j.issn.2095-560X.2022.03.010.

XIA Y, WAN J F, LI J C, et al. Research progress of gravity energy storage technology [J]. Advances in new and renewable enengy, 2022, 10(3): 258-264. DOI:  10.3969/j.issn.2095-560X.2022.03.010.
[3] 王粟, 肖立业, 唐文冰, 等. 新型重力储能研究综述 [J]. 储能科学与技术, 2022, 11(5): 1575-1582. DOI:  10.19799/j.cnki.2095-4239.2021.0590.

WANG S, XIAO L Y, TANG W B, et al. Review of new gravity energy storage [J]. Energy storage science and technology, 2022, 11(5): 1575-1582. DOI:  10.19799/j.cnki.2095-4239.2021.0590.
[4] TONG W X, LU Z G, CHEN W J, et al. Solid gravity energy storage: a review [J]. Journal of energy storage, 2022, 53: 105226. DOI:  10.1016/j.est.2022.105226.
[5] 杨闯, 朱曙荣, 边技超, 等. 新型物理储能技术路线分析 [J]. 电站辅机, 2023, 44(2): 10-15. DOI:  10.3969/j.issn.1672-0210.2023.02.004.

YANG C, ZHU S R, BIAN J C, et al. Analysis for new physical energy storage technology route [J]. Power station auxiliary equipment, 2023, 44(2): 10-15. DOI:  10.3969/j.issn.1672-0210.2023.02.004.
[6] 薛福, 马晓明, 游焰军. 储能技术类型及其应用发展综述 [J]. 综合智慧能源, 2023, 45(9): 48-58. DOI:  10.3969/j.issn.2097-0706.2023.09.007.

XUE F, MA X M, YOU Y J. Energy storage technologies and their applications and development [J]. Integrated intelligent energy, 2023, 45(9): 48-58. DOI:  10.3969/j.issn.2097-0706.2023.09.007.
[7] FRAENKEL P, WRIGHT M. Apparatus and method for electrical energy storage: GB2518125A [P]. 2015-03-18.
[8] 邱清泉, 罗晓悦, 林玉鑫, 等. 垂直式重力储能系统的研究进展和关键技术 [J]. 储能科学与技术, 2024, 13(3): 934-945. DOI:  10.19799/j.cnki.2095-4239.2023.0789.

QIU Q Q, LUO X Y, LIN Y X, et al. Research progress and key technologies in vertical gravity energy storage systems [J]. Energy storage science and technology, 2024, 13(3): 934-945. DOI:  10.19799/j.cnki.2095-4239.2023.0789.
[9] 陈云良, 刘旻, 凡家异, 等. 重力储能发电现状、技术构想及关键问题 [J]. 工程科学与技术, 2022, 54(1): 97-105. DOI:  10.15961/j.jsuese.202101140.

CHEN Y L, LIU M, FAN J Y, et al. Present situation, technology conceptualization and key problem for gravity energy storage [J]. Advanced engineering sciences, 2022, 54(1): 97-105. DOI:  10.15961/j.jsuese.202101140.
[10] 赫文豪, 李懂文, 杨东杰, 等. 新型重力储能技术研究现状与发展趋势 [J]. 大学物理实验, 2022, 35(5): 1-7. DOI:  10.14139/j.cnki.cn22-1228.2022.05.001.

HE W H, LI D W, YANG D J, et al. Research and development of novel gravity energy storage technologies [J]. Physical experiment of college, 2022, 35(5): 1-7. DOI:  10.14139/j.cnki.cn22-1228.2022.05.001.
[11] MORSTYN T, CHILCOTT M, MCCULLOCH M D. Gravity energy storage with suspended weights for abandoned mine shafts [J]. Applied energy, 2019, 239: 201-206. DOI:  10.1016/j.apenergy.2019.01.226.
[12] BOTHA C D, KAMPER M J. Capability study of dry gravity energy storage [J]. Journal of energy storage, 2019, 23: 159-174. DOI:  10.1016/j.est.2019.03.015.
[13] MOORE S K. The ups and downs of gravity energy storage: startups are pioneering a radical new alternative to batteries for grid storage [J]. IEEE spectrum, 2021, 58(1): 38-39. DOI:  10.1109/MSPEC.2021.9311456.
[14] 张正秋, 武安, 张海川. 一种依托煤矿矿井的重力储能系统: 209676010U [P]. 2019-12-22.

ZHANG Z Q, WU A, ZHANG H C. Gravity energy storage system depending on coal mine: 209676010U [P]. 2019-12-22.
[15] 宋立平, 董宝光, 王东军, 等. 一种基于矿井立井筒、提升、运输系统的重力储能系统: 209536772U [P]. 2019-10-25.

SONG L P, DONG B G, WANG D J, et al. Gravity energy storage system based on mine shaft erecting, lifting and transporting system: 209536772U [P]. 2019-10-25.
[16] 肖立业, 史黎明, 韦统振, 等. 铁路轨道运载车辆储能系统: 108437808A [P]. 2018-08-24.

XIAO L Y, SHI L M, WEI T Z, et al. Railway track carrier vehicle energy storage system: 108437808A [P]. 2018-08-24.
[17] 罗振军, 黄田, 梅江平, 等. 依托山体的重力储能系统: 103867408A [P]. 2014-06-18.

LUO Z J, HUANG T, MEI J P, et al. Gravity energy storing system relying on massif: 103867408A [P]. 2014-06-18.
[18] 秦婷婷, 周学志, 郭丁彰, 等. 铁轨重力储能系统效率影响因素研究 [J]. 储能科学与技术, 2023, 12(3): 835-845. DOI:  10.19799/j.cnki.2095-4239.2022.0634.

QIN T T, ZHOU X Z, GUO D Z, et al. Study on factors influencing rail gravity energy storage system efficiency [J]. Energy storage science and technology, 2023, 12(3): 835-845. DOI:  10.19799/j.cnki.2095-4239.2022.0634.
[19] SALEH M, DUTTA O, ESA Y, et al. Quantitative analysis of regenerative energy in electric rail traction systems [C]//Proceedings of 2017 IEEE Industry Applications Society Annual Meeting, Cincinnati, OH, USA, October 1-5, 2017. Cincinnati: IEEE, 2017: 2-7. DOI:  10.1109/IAS.2017.8101774.
[20] 刘晓辉, 袁康, 白亚奎, 等. 框架式重力储能系统经济性分析 [J]. 分布式能源, 2023, 8(3): 47-53. DOI:  10.16513/j.2096-2185.DE.2308307.

LIU X H, YUAN K, BAI Y K, et al. Economic analysis of frame gravity energy storage system [J]. Distributed energy, 2023, 8(3): 47-53. DOI:  10.16513/j.2096-2185.DE.2308307.
[21] 靳雯皓, 刘继春. 平滑风电功率波动的混合储能系统容量优化配置 [J]. 分布式能源, 2017, 2(2): 32-38. DOI:  10.16513/j.cnki.10-1427/tk.2017.02.005.

JIN W H, LIU J C. Capacity optimization configuration of hybrid energy storage system for smoothing wind power fluctuation [J]. Distributed energy, 2017, 2(2): 32-38. DOI:  10.16513/j.cnki.10-1427/tk.2017.02.005.