高级检索

基于大涡模拟与中尺度数值天气模式的精细化风场模拟

Refined Wind Simulation Based on Large Eddy Simulation and Mesoscale Numerical Weather Model

  • 摘要:
      目的  结合中尺度模型与大涡模拟模型,考虑大气边界层变化,开展了亚公里级的项目机组排布的数值模拟,给海上风机项目在选址排布阶段提供发电效能高的排布方案。
      方法  将中尺度数值天气模拟结果转换为大涡模拟模型输入的边界条件,并在大涡模拟模型中引入实际风电场运行的模型参数,进行考虑实际大气边界层变化下的风电场空间的环境风场数值模拟试验,基于风电场收集的观测数据,对本风场精细化模拟方案的结果进行评估。
      结果  模拟结果表明:将中尺度天气模型的模拟结果转换为大涡模拟模型能读取的动态驱动并基于该模型对风电场所处的风场进行模拟,其模拟结果能再现在实际风电场中,外部风场流经风电场后,外部风场的变化和在风电机群内所产生的尾流及其对于风电场内部风场的影响,且在风机轮毂处的风速模拟值的均方根误差为1.54 m/s。
      结论  该考虑中尺度气象要素变化和风电场对环境风场影响的风场精细化模拟方案可为实际项目设计阶段提供相应的指导。

     

    Abstract:
      Introduction  Combining mesoscale numerical model and large eddy simulation (LES) model, numerical sumulation of sub-kilometer-scale project unit placement is carried out, which takes into account atmospheric boundary layer changes. It provides offshore wind turbine projects with high-efficiency power generation placement schemes.
      Method  This study converted the mesoscale numerical weather simulation results into boundary conditions for the input of the LES model and introduced model parameters reflecting the operation of an actual wind farm into the LES simulation. The numerical sumulation experiments of the ambient wind field in the wind farm region was carried out under the consideration of the change of the actual atmospheric boundary layer, and the results of the refined simulation scheme of this wind field were evaluated based on the observation data collected from the wind farm.
      Result  The simulation results indicate that by converting the results of the mesoscale weather model into the dynamic drive which is read by the LES model and simulating the wind field where the wind farm is located based on the model, the simulation results are able to replicate the changes in the external wind field after passing through the wind farm and the wake generated within the wind turbine fleet, as well as its impact on the internal wind field of the wind farm. The root mean square error of wind speed simulation at the hub of wind turbines is 1.54 m/s.
      Conclusion  The refined wind field simulation scheme, which takes into account the variation of mesoscale meteorological elements and the impact of wind farms on the ambient wind field, can provide guidance for the design phase of actual projects.

     

/

返回文章
返回