高级检索

绿色氢基能源技术研究进展与产业化现状

罗志斌, 孙潇, 蔡春荣, 张春文

罗志斌,孙潇,蔡春荣,等. 绿色氢基能源技术研究进展与产业化现状[J]. 南方能源建设,2025,12(3):20-32.. DOI: 10.16516/j.ceec.2025-042
引用本文: 罗志斌,孙潇,蔡春荣,等. 绿色氢基能源技术研究进展与产业化现状[J]. 南方能源建设,2025,12(3):20-32.. DOI: 10.16516/j.ceec.2025-042
LUO Zhibin, SUN Xiao, CAI Chunrong, et al. Research progress and current status of industrialization for green hydrogen-based energy technologies [J]. Southern energy construction, 2025, 12(3): 20-32. DOI: 10.16516/j.ceec.2025-042
Citation: LUO Zhibin, SUN Xiao, CAI Chunrong, et al. Research progress and current status of industrialization for green hydrogen-based energy technologies [J]. Southern energy construction, 2025, 12(3): 20-32. DOI: 10.16516/j.ceec.2025-042
罗志斌,孙潇,蔡春荣,等. 绿色氢基能源技术研究进展与产业化现状[J]. 南方能源建设,2025,12(3):20-32.. CSTR: 32391.14.j.ceec.2025-042
引用本文: 罗志斌,孙潇,蔡春荣,等. 绿色氢基能源技术研究进展与产业化现状[J]. 南方能源建设,2025,12(3):20-32.. CSTR: 32391.14.j.ceec.2025-042
LUO Zhibin, SUN Xiao, CAI Chunrong, et al. Research progress and current status of industrialization for green hydrogen-based energy technologies [J]. Southern energy construction, 2025, 12(3): 20-32. CSTR: 32391.14.j.ceec.2025-042
Citation: LUO Zhibin, SUN Xiao, CAI Chunrong, et al. Research progress and current status of industrialization for green hydrogen-based energy technologies [J]. Southern energy construction, 2025, 12(3): 20-32. CSTR: 32391.14.j.ceec.2025-042

绿色氢基能源技术研究进展与产业化现状

基金项目: 

广东省新型电力系统技术创新项目“液氢-超导复合储能在新型电力系统中的应用模式研究”;中国能建广东院科技项目“海上风电耦合氢能制备及储运技术研究”(EV11041W)

详细信息
    作者简介:

    罗志斌,1989年,男,天津大学化学工艺博士,主要研究方向为氢能、储能以及二氧化碳利用技术研究与产业化(e-mail)luozhibin@gedi.com.cn

    通讯作者:

    罗志斌,1989年,男,天津大学化学工艺博士,主要研究方向为氢能、储能以及二氧化碳利用技术研究与产业化(e-mail)luozhibin@gedi.com.cn

  • 中图分类号: TK91;TQ122

Research Progress and Current Status of Industrialization for Green Hydrogen-based Energy TechnologiesEn

  • 摘要:
    目的 

    氢基能源是以氢作为主要介质转化形成的二次能源,对推动能源体系低碳转型,实现碳中和目标,具有重要意义。研究氢基能源产业的关键技术和发展现状,有助于对氢基能源产业的发展提出前瞻性的建议。

    方法 

    文章综述了氢气以及氨、甲醇和可持续航空煤油等绿色氢基燃料的生产、储运和应用三大环节的关键技术及其技术成熟度,研判了氢基能源产业技术的难点和发展方向,并基于国内外氢基能源的发展形势,分析了我国氢基能源产业发展的现状。

    结果 

    绿色氢基能源关键技术持续取得突破、核心装备国产化水平不断提高、示范项目的规模进一步扩大,但目前氢基能源产业的发展仍处于初期阶段,制约生产效率和应用推广的技术难题依然存在,规模化和降成本是产业发展的重要方向。

    结论 

    推动氢基能源产业的发展,需要夯实科技创新基础,围绕重点领域“卡脖子”技术攻关,加快自主创新产品的国产化。进一步加快储运基础设施建设并拓展下游应用场景,逐步建设和完善适应行业发展的产业政策和标准体系。

    Abstract:
    Objective 

    Hydrogen-based energy is a secondary energy source produced by the conversion of hydrogen as the major medium, which is of great significance for promoting the low-carbon transformation of the energy system and achieving the goal of carbon neutrality. The study of the key technologies and development status of the hydrogen-based energy industry contributes to provide forward-looking suggestions for the development of the industry.

    Method 

    This paper reviewed the key technologies and their technological maturity in the production, storage and transportation and application of green hydrogen-based fuels such as hydrogen, ammonia, methanol and sustainable aviation fuel, assessed the difficulties and development directions of hydrogen-based energy technology, and analyzed the current situation of the development of hydrogen-based energy industry in China based on the global development status.

    Result 

    The key technologies of green hydrogen-based energy continues to make breakthroughs, the localization level of core equipments continues to improve, and the scale of demonstration projects is further expanded. However, the development of hydrogen-based energy industry is still in the early stage and the technical challenges restricting production efficiency and application still exist. Scaling up and reducing costs are important directions of the industry's development.

    Conclusion 

    To promote the development of the hydrogen-based energy industry, it is necessary to strengthen the foundation of scientific and technological innovation, focus on key areas of critical technologies research, and accelerate the localization of independent innovation products. Furthermore, it is necessary to accelerate the construction of storage and transportation infrastructure and expand downstream application scenarios, as well as gradually establish and improve the industrial policy and standard system that adapts to the development of the industry.

  • 图  1   氢基能源产业链示意图

    Figure  1.   Schematic diagram of the hydrogen-based energy industry chain

    图  2   几种氢储运技术经济性对比[26]

    Figure  2.   Comparison of the economic performance of several hydrogen storage and transportation technologies[26]

    图  3   绿色合成氨与传统合成氨工艺对比

    Figure  3.   Comparison of the synthesis process of green ammonia with traditional ammonia

    图  4   不同碳排放强度的甲醇合成工艺

    Figure  4.   Methanol synthesis processes with different carbon emission intensities

    表  1   主要制氢技术情况对比[11]

    Table  1   Comparison of the major hydrogen production methods[11]

    技术类型 化石燃料制氢 工业副产氢 电解水制氢 新型制氢
    技术细分 煤气化制氢
    天然气裂解制氢
    甲醇裂解制氢
    焦炉煤气
    合成氨/醇尾气
    氯碱副产氢
    丙烷脱氢等
    碱性电解水制氢
    PEM电解水制氢
    SOEC电解水制氢
    AEM电解水制氢
    生物质制氢
    核能制氢
    太阳光催化制氢
    技术优势 技术成熟度高、产量大、成本低 工业副产品成本较低、投资小 设备简单、运行稳定、无碳排放
    技术不足 工艺流程长、碳排放量大 建设地址受限、产量不可控 能耗高、制氢成本高 实验室研究阶段
    成本水平/(元·kg−1) 6~15 8~20 15~40
    碳排放情况 煤制氢:20~30 kg CO2/kg H2
    天然气制氢:10~15 kg CO2/kg H2
    种类较多,通常在1~5 kg
    CO2/kg H2范围
    零碳排放(清洁电力,
    如是网电需要考虑电源结构)
    零碳排放
    消费占比/% ~78 ~21 ~1.0
    注:成本水平、消费占比为2024年数据。
    下载: 导出CSV

    表  2   各类电解槽技术参数对比[14]

    Table  2   Comparison of technical parameters of various electrolyzers[14]

    电解槽类型ALKPEMSOECAEM
    技术成熟度商业化阶段商业化阶段应用示范阶段应用示范阶段
    电解液/质20%~30%KOH纯水Y2O3/ZrO2碱液/纯水
    最大单机规模25 MW(5 000 Nm3/h)5 MW(1 000 Nm3/h)~1 MW(200 Nm3/h)~1 MW(200 Nm3/h)
    制氢效率/%60~8065~8575~9560~75
    系统电耗/
    (kWh·Nm−3)
    4.5~5.54.0~5.03.0~4.04.0~5.0
    工作温度/℃65~10070~95650~100065~95
    操作压力/MPa1.0~3.22.0~5.00.1~1.50.1~3.0
    负荷范围/%30~1105~11030~1105~110
    技术优势技术成熟度高、
    成本较低
    氢气压力大、纯度高、
    响应迅速
    无贵金属催化剂、系统效率高,
    可利用高温废热替代部分电耗
    可减少贵金属催化剂、
    结构紧凑、响应速度快
    注:相关数据以2024年为参考基准。
    下载: 导出CSV

    表  5   几类储氢载体的特性对比

    Table  5   Comparison of the characteristics of several types of hydrogen storage carriers

    氢载体 储氢模式 储氢
    密度/wt%
    优势 劣势
    液氨 利用合成氨技术将氢气转化成氨气,
    进一步液化成液氨
    ~17.8 合成氨工业成熟,液氨储运设备、
    基础设施完善,有利于大规模储运
    液氨属于危化品,具有一定的臭味和毒性,高效液氨裂解制氢技术成熟度有待提升
    甲醇 利用二氧化碳加氢技术将氢气转化为甲醇 ~12.5 甲醇与液氨类似,是常用的化工
    原料,储运技术和基础设施完善,
    有利于大规模储运
    甲醇属于危化品,具有毒性,现阶段二氧化碳加氢合成甲醇技术仍需提高
    液态
    有机物
    利用不饱和液体有机物作为储氢载体(储油),经过催化加氢反应生成饱和化合物
    (氢油),氢油可催化脱氢重新生成储油
    ~5~8 氢油性质稳定、安全性高,
    适合大规模储运
    储氢与脱氢都需要经过催化反应,
    设备复杂、综合能耗高
    固体
    材料
    利用储氢材料与氢气之间发生的物理
    或化学变化,转化为固溶体或氢化物的
    形式进行储氢
    ~1~8 体积储氢密度高、安全性好,
    不需要高压容器
    质量储氢密度低、成本较高,氢气储放过程需特定温度范围
    下载: 导出CSV

    表  4   典型的几类有机液态氢载体[24]

    Table  4   Typical classes of organic liquid hydrogen carriers[24]

    储氢材料(氢油) 熔点/℃ 沸点/℃ 理论储氢量/wt%
    环己烷 6.5 80.7 7.19
    甲基环己烷 −126.6 101 6.18
    反式-十氢化萘 −30.4 185 7.29
    咔唑 244.8 355 6.70
    乙基咔唑 68 190 5.80
    下载: 导出CSV

    表  3   不同类型储氢瓶技术参数对比[15]

    Table  3   Comparison of technical parameters of different types of hydrogen storage cylinders[15]

    型号
    生产工艺 纯钢质金属 钢质内胆、纤维缠绕 铝质内胆、纤维缠绕 塑料内胆、纤维缠绕 无内胆、纤维缠绕
    工作压力/MPa 20~30 10~50 30~70 ≥70 研发中
    重量/体积比/(kg·L−1) 0.9~1.3 0.6~0.95 0.35~1.0 0.3~0.8
    使用寿命/a 15 15 15/20 15/20
    典型体积储氢密度/(kg·m−3 15 20 25 ≥40
    注:重量/体积比是储氢瓶重量与其体积的关系,体积储氢密度是储氢瓶储氢量与其体积的关系。
    下载: 导出CSV

    表  6   几种燃料的理化性能对比

    Table  6   Comparison of physical and chemical properties of various fuels

    燃料 气体密度/
    (kg·m−3)
    液体密度/
    (kg·L−1)
    液化
    温度/℃
    低热值/
    (MJ·Nm−3)
    低热值/
    (MJ·kg−1)
    氢气 0.089 9 0.071 −252.5 10.23 120
    氨气 0.771 0.617 −33.5 14.34 18.6
    甲醇 常温液态 0.793 64.8 常温液态 19.83
    天然气 0.717 ~0.45 −161.5 35.87 50.0
    下载: 导出CSV

    表  7   几种合成可持续航空煤油技术对比

    Table  7   Comparison of several synthetic sustainable aviation fuel technologies

    路线原料中间体主要工序技术成熟度
    油脂加氢动植物油脂、藻类植物脂类油脂提取、加氢脱氧、烷烃异构化商业化可行性最高的工艺,
    预计2030年前占据市场主导地位
    气化-费托合成农林废弃物、富纤维能源作物CO、H2气化、费托合成商业化试点
    醇类制油农林废弃物、玉米、甘蔗醇类发酵、脱水、聚合、加氢转化商业化试点
    电制燃料大气CO2CO2直接空气碳捕集、可再生能源电解水制氢、
    二氧化碳加氢合成
    发展中,直接空气碳捕集和清洁电力制氢,
    减排潜力和生产潜力大
    清洁电力H2
    下载: 导出CSV

    表  8   氢基能源产业技术难点与发展方向

    Table  8   Technical difficulties and development direction of hydrogen-based energy industry

    燃料技术难点发展方向
    氢气体积能量密度低、大规模储运难度大;电解制氢效率低大规模、低成本、高效制氢技术;大规模、低成本、高效氢储运技术
    氨气有毒化学品;燃烧性能差;合成能耗高高效燃烧技术;高效氢氨转换技术
    甲醇毒性、腐蚀性;含碳燃料绿色合成技术
    可持续航空煤油原料来源多、预处理工艺复杂;技术路线多,
    除了脂类之外的合成路线成熟度低
    大规模、低成本合成技术
    下载: 导出CSV

    表  9   典型绿色氢基燃料项目介绍

    Table  9   Introductions of typical green hydrogen-based fuel projects

    项目名称 建设内容 技术路线 项目亮点
    新疆库车绿氢示范项目 新建300 MW光伏电站,2万t/a制氢能力的电解水制氢厂,21万Nm3的储氢球罐,输氢能力2.8万Nm3/h的输氢管线及配套输变电设施 光伏制氢 全国首个万吨级光伏绿氢项目
    内蒙古达茂旗
    制氢示范工程
    新建120 MW风电,80 MW光伏,电化学储能20 MW时,12 000 Nm3/h电解水制氢装置,
    氢气年产能7 800 t
    风光制氢 全国首批大规模可再生能源制绿氢示范项目
    洮南市风电耦合生物质
    绿色甲醇一体化示范项目
    新建680 MW风电,80万t/a生物质预处理产线,年产绿色甲醇25万t 风电制氢耦合生物质
    气化制绿色甲醇
    世界首台纯氧加压循环流化床生物质
    气化系统,单炉生物质处理量300 t/d
    双鸭山绿色甲醇与
    绿色航油示范基地项目
    建设年产20万t绿色甲醇、30万t绿色航油,配套风光发电、生物质收储及预处理、制氢储氢、生物质气化及合成航油装置等 风光制氢耦合生物质气化
    制甲醇、费托合成航煤
    全球首个十万吨级风光氢融合
    生物质绿色航油示范项目
    中能建松原氢能产业园
    (绿色氢氨醇一体化)项目
    年产60万t绿色合成氨和6万t绿色甲醇,
    配套建设3 GW新能源项目
    风光制氢合成氨、生物质富氧燃烧CO2加氢制甲醇 全球最大体量的绿色氢氨醇一体化项目
    下载: 导出CSV

    表  10   绿色氢基燃料项目产能统计

    Table  10   Statistics of green hydrogen-based fuel projects by capacity

    类别 规划数量/项 规划总产能/(104 t·a−1) 投产数量/项 投产产能/(104 t·a−1)
    绿氢 >700 >800 10 >12
    绿氨 >120 >2 000
    低碳甲醇 >100 >2 400
    可持续航空煤油 >20 >700 4 45
    注:统计数据截至2024年底,绿氢投产项目统计为10 MW容量以上的数量。
    下载: 导出CSV
  • [1]

    Hydrogen Council, McKinsey & Company. Hydrogen insights 2024 [EB/OL]. (2024-09-17) [2025-02-20]. https://hydrogencouncil.com/en/hydrogen-insights-2024.

    [2]

    Grattan Institute. Hydrogen: hype, hope, or hard work? [EB/OL]. (2023-12-03) [2025-02-20]. https://grattan.edu.au/report/hydrogen-hype-hope-or-hard-work.

    [3]

    International Energy Agency. Net zero by 2050: a roadmap for the global energy sector [EB/OL]. (2021-05-18) [2025-02-20]. https://www.iea.org/events/net-zero-by-2050-a-roadmap-for-the-global-energy-system.

    [4] 罗志斌, 孙潇, 孙翔, 等. 氢能与储能耦合发展的机遇与挑战 [J]. 南方能源建设, 2022, 9(4): 24-31. DOI: 10.16516/j.gedi.issn2095-8676.2022.04.003.

    LUO Z B, SUN X, SUN X, et al. The coupling development of hydrogen and energy storage technology: opportunities and challenges [J]. Southern energy construction, 2022, 9(4): 24-31. DOI: 10.16516/j.gedi.issn2095-8676.2022.04.003.

    [5] 肖楷, 高啸天, 李震, 等. “双碳”目标背景下的甲醇技术及其应用 [J]. 内蒙古电力技术, 2025, 43(1): 3-10. DOI: 10.19929/j.cnki.nmgdljs.2025.0002.

    XIAO K, GAO X T, LI Z, et al. Methanol technology in context of dual carbon target and its application [J]. Inner Mongolia electric power, 2025, 43(1): 3-10. DOI: 10.19929/j.cnki.nmgdljs.2025.0002.

    [6] 郑可昕, 高啸天, 范永春, 等. 支撑绿氢大规模发展的氨、甲醇技术对比及应用发展研究 [J]. 南方能源建设, 2023, 10(3): 63-73. DOI: 10.16516/j.gedi.issn2095-8676.2023.03.007.

    ZHENG K X, GAO X T, FAN Y C, et al. Comparison and application prospects of ammonia and methanol technologies supporting large-scale development of green hydrogen energy [J]. Southern energy construction, 2023, 10(3): 63-73. DOI: 10.16516/j.gedi.issn2095-8676.2023.03.007.

    [7] 陈伟平, 施仲涨, 林皓然, 等. 我国绿氢产业发展现状分析与建议 [J]. 厦门大学学报(自然科学版), 2025, 64(1): 193-203, 210. DOI: 10.6043/j.issn.0438-0479.202405031.

    CHEN W P, SHI Z Z, LIN H R, et al. Analyses and suggestions on current development status of China's green hydrogen industry [J]. Journal of Xiamen University (natural science), 2025, 64(1): 193-203, 210. DOI: 10.6043/j.issn.0438-0479.202405031.

    [8] 黄晟, 杨振丽, 李振宇. 氢产业链发展的路径分析 [J]. 化工进展, 2024, 43(2): 882-893. DOI: 10.16085/j.issn.1000-6613.2023-1497.

    HUANG S, YANG Z L, LI Z Y. Analysis of optimization path of developing China's hydrogen industry [J]. Chemical industry and engineering progress, 2024, 43(2): 882-893. DOI: 10.16085/j.issn.1000-6613.2023-1497.

    [9]

    International Energy Agency. Global hydrogen review 2024 [EB/OL]. (2024-10-02) [2025-02-20]. https://www.iea.org/reports/global-hydrogen-review-2024.

    [10]

    International Renewable Energy Agency. Green hydrogen auctions: a guide to design [EB/OL]. (2024-10-30) [2025-02-20]. https://www.irena.org/Publications/2024/Oct/Green-hydrogen-auctions-A-guide-to-design.

    [11]

    XIE Y H, LUO F, YANG Z H. Strategies for the enhancements in catalytic performance and stability of anodic electrocatalyst in PEM water splitting [J]. Energy reviews, 2024, 3(4): 100103. DOI: 10.1016/j.enrev.2024.100103.

    [12]

    WANG C R, STANSBERRY J M, MUKUNDAN R, et al. Proton exchange membrane (PEM) water electrolysis: cell-level considerations for gigawatt-scale deployment [J]. Chemical reviews, 2025, 125(3): 1257-1302. DOI: 10.1021/acs.chemrev.3c00904.

    [13]

    CHEN W, SUN C W. Recent advances in high temperature solid oxide electrolytic cells [J]. Energy materials, 2025, 5: 500045. DOI: 10.20517/energymater.2024.144.

    [14]

    LIU H, YU M, TONG X F, et al. High temperature solid oxide electrolysis for green hydrogen production [J]. Chemical reviews, 2024, 124(18): 10509-10576. DOI: 10.1021/acs.chemrev.3c00795.

    [15] 周树辉, 王秀林, 段品佳, 等. 高压气态储氢技术形势分析 [J]. 储能科学与技术, 2023, 12(8): 2668-2679. DOI: 10.19799/j.cnki.2095-4239.2023.0139.

    ZHOU S H, WANG X L, DUAN P J, et al. Analysis of high-pressure gaseous hydrogen storage technology [J]. Energy storage science and technology, 2023, 12(8): 2668-2679. DOI: 10.19799/j.cnki.2095-4239.2023.0139.

    [16] 梁前超, 赵建锋, 梁一帆, 等. 储氢技术发展现状 [J]. 海军工程大学学报, 2022, 34(3): 92-101. DOI: 10.7495/j.issn.1009-3486.2022.03.016.

    LIANG Q C, ZHAO J F, LIANG Y F, et al. Progress in hydrogen storage technology [J]. Journal of naval university of engineering, 2022, 34(3): 92-101. DOI: 10.7495/j.issn.1009-3486.2022.03.016.

    [17] 李天娇, 谢飞, 张瑛, 等. 天然气管道掺氢输送技术研究进展 [J]. 油气储运, 2024, 43(12): 1337-1347. DOI: 10.6047/j.issn.1000-8241.2024.12.002.

    LI T J, XIE F, ZHANG Y, et al. Advancements in hydrogen-blended natural gas pipeline transmission technology [J]. Oil & gas storage and transportation, 2024, 43(12): 1337-1347. DOI: 10.6047/j.issn.1000-8241.2024.12.002.

    [18] 王昊成, 杨敬瑶, 董学强, 等. 氢液化与低温高压储氢技术发展现状 [J]. 洁净煤技术, 2023, 29(3): 102-113. DOI: 10.13226/j.issn.1006-6772.H22123101.

    WANG H C, YANG J Y, DONG X Q, et al. Review on hydrogen liquefaction and cryo-compression hydrogen storage technologies [J]. Clean coal technology, 2023, 29(3): 102-113. DOI: 10.13226/j.issn.1006-6772.H22123101.

    [19] 王鑫, 陈叔平, 朱鸣. 液氢储运技术发展现状与展望 [J]. 太阳能学报, 2024, 45(1): 500-514. DOI: 10.19912/j.0254-0096.tynxb.2022-1559.

    WANG X, CHEN S P, ZHU M. Development status and prospect of liquid hydrogen storage and transportation technology [J]. Acta energiae solaris sinica, 2024, 45(1): 500-514. DOI: 10.19912/j.0254-0096.tynxb.2022-1559.

    [20] 滕霖, 尹鹏博, 聂超飞, 等. “氨-氢”绿色能源路线及液氨储运技术研究进展 [J]. 油气储运, 2022, 41(10): 1115-1129. DOI: 10.6047/j.issn.1000-8241.2022.10.001.

    TENG L, YIN P B, NIE C F, et al. Research progress on "ammonia-hydrogen" green energy roadmap and storage & transportation technology of liquid ammonia [J]. Oil & gas storage and transportation, 2022, 41(10): 1115-1129. DOI: 10.6047/j.issn.1000-8241.2022.10.001.

    [21] 杜东, 王小林, 张国生, 等. 氨能产业发展现状及展望 [J]. 石油科技论坛, 2023, 42(2): 96-104. DOI: 10.3969/j.issn.1002-302x.2023.02.012.

    DU D, WANG X L, ZHANG G S, et al. Present conditions and prospects of ammonia energy industrial development [J]. Petroleum science and technology forum, 2023, 42(2): 96-104. DOI: 10.3969/j.issn.1002-302x.2023.02.012.

    [22] 刘迪, 汤玮健, 韩伟, 等. 绿氢时代的船用燃料: 绿色甲醇和绿氨 [J/OL]. 化工进展, 2025: 1-9(2025-01-03) [2025-02-20]. https://doi.org/10.16085/j.issn.1000-6613.2024-1771.

    LIU D, TANG W J, HAN W, et al. Marine fuels in the era of green hydrogen: green methanol and green ammonia [J/OL]. Chemical industry and engineering progress, 2025: 1-9(2025-01-03) [2025-02-20]. https://doi.org/10.16085/j.issn.1000-6613.2024-1771.

    [23]

    LI J G, WU C N, CAO D F, et al. Green methanol-an important pathway to realize carbon neutrality [J]. Engineering, 2023, 29: 27-31. DOI: 10.1016/j.eng.2023.08.005.

    [24] 刘若璐, 汤海波, 罗凤盈, 等. 液态有机储氢技术应用与展望 [J]. 现代化工, 2025, 45(2): 47-51, 56. DOI: 10.16606/j.cnki.issn0253-4320.2025.02.010.

    LIU R L, TANG H B, LUO F Y, et al. Application and prospect of liquid organics hydrogen storage technology [J]. Modern chemical industry, 2025, 45(2): 47-51, 56. DOI: 10.16606/j.cnki.issn0253-4320.2025.02.010.

    [25]

    ABDECHAFIK E H, AIT OUSALEH H, MEHMOOD S, et al. An analytical review of recent advancements on solid-state hydrogen storage [J]. International journal of hydrogen energy, 2024, 52: 1182-1193. DOI: 10.1016/j.ijhydene.2023.10.218.

    [26] 黄嘉豪, 田志鹏, 雷励斌, 等. 氢储运行业现状及发展趋势 [J]. 新能源进展, 2023, 11(2): 162-173. DOI: 10.3969/j.issn.2095-560X.2023.02.009.

    HUANG J H, TIAN Z P, LEI L B, et al. Advances and development trends of hydrogen storage and refueling industry [J]. Advances in new and renewable energy, 2023, 11(2): 162-173. DOI: 10.3969/j.issn.2095-560X.2023.02.009.

    [27]

    SHU K Y, GUAN B, ZHUANG Z Q, et al. Reshaping the energy landscape: explorations and strategic perspectives on hydrogen energy preparation, efficient storage, safe transportation and wide applications [J]. International journal of hydrogen energy, 2025, 97: 160-213. DOI: 10.1016/j.ijhydene.2024.11.110.

    [28]

    LIU K, DING Y L. Large-scale energy storage for carbon neutrality [J]. Engineering, 2023, 29: 1. DOI: 10.1016/j.eng.2023.09.010.

    [29]

    HWANG J, MAHARJAN K, CHO H. A review of hydrogen utilization in power generation and transportation sectors: achievements and future challenges [J]. International journal of hydrogen energy, 2023, 48(74): 28629-28648. DOI: 10.1016/j.ijhydene.2023.04.024.

    [30]

    NEUWIRTH M, FLEITER T, MANZ P, et al. The future potential hydrogen demand in energy-intensive industries - a site-specific approach applied to Germany [J]. Energy conversion and management, 2022, 252: 115052. DOI: 10.1016/j.enconman.2021.115052.

    [31]

    ZHANG Z H, ZHANG H J, JIANG H Y, et al. Green ammonia: revolutionizing sustainable energy for a carbon-free future [J]. Journal of materials chemistry A, 2024, 12(48): 33334-33361. DOI: 10.1039/D4TA07339H.

    [32]

    CHANG F, TEZSEVIN I, DE RIJK J W, et al. Potassium hydride-intercalated graphite as an efficient heterogeneous catalyst for ammonia synthesis [J]. Nature catalysis, 2022, 5(3): 222-230. DOI: 10.1038/s41929-022-00754-x.

    [33]

    CHENG Q, MUHAMMAD A, KAARIO O, et al. Ammonia as a sustainable fuel: review and novel strategies [J]. Renewable and sustainable energy reviews, 2025, 207: 114995. DOI: 10.1016/j.rser.2024.114995.

    [34]

    ZHAO N, YANG J Y, AI T C, et al. From methanol to power: energy, economic and life-cycle assessments of several pathways [J]. Journal of cleaner production, 2025, 486: 144501. DOI: 10.1016/j.jclepro.2024.144501.

    [35]

    SCHORN F, BREUER J L, SAMSUN R C, et al. Methanol as a renewable energy carrier: an assessment of production and transportation costs for selected global locations [J]. Advances in applied energy, 2021, 3: 100050. DOI: 10.1016/j.adapen.2021.100050.

    [36]

    WANDELT S, ZHANG Y H, SUN X Q. Sustainable aviation fuels: a meta-review of surveys and key challenges [J]. Journal of the air transport research society, 2025, 4: 100056. DOI: 10.1016/j.jatrs.2024.100056.

    [37] 国家能源局. 氢能产业发展中长期规划(2021-2035年) [EB/OL]. (2022-03-23) [2025-02-20]. https://zfxxgk.nea.gov.cn/2022-03/23/c_1310525630.htm.

    National Energy Administration. Medium and long-term plan for the development of hydrogen energy industry (2021-2035) [EB/OL]. (2022-03-23) [2025-02-20]. https://zfxxgk.nea.gov.cn/2022-03/23/c_1310525630.htm.

图(4)  /  表(10)
计量
  • 文章访问数:  747
  • HTML全文浏览量:  47
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-24
  • 修回日期:  2025-04-05
  • 录用日期:  2025-04-08
  • 网络出版日期:  2025-05-13
  • 发布日期:  2025-05-14
  • 刊出日期:  2025-05-29

目录

    ZHANG Chunwen

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回