高级检索

海上风电支撑结构等效疲劳荷载法存在的问题

李鲁, 林敬华

李鲁, 林敬华. 海上风电支撑结构等效疲劳荷载法存在的问题[J]. 南方能源建设, 2020, 7(S1): 88-92. DOI: 10.16516/j.gedi.issn2095-8676.2020.S1.017
引用本文: 李鲁, 林敬华. 海上风电支撑结构等效疲劳荷载法存在的问题[J]. 南方能源建设, 2020, 7(S1): 88-92. DOI: 10.16516/j.gedi.issn2095-8676.2020.S1.017
Lu LI, ✉. Problem of Equivalent Fatigue Static Load for Offshore Wind Turbine Support Structure[J]. SOUTHERN ENERGY CONSTRUCTION, 2020, 7(S1): 88-92. DOI: 10.16516/j.gedi.issn2095-8676.2020.S1.017
Citation: Lu LI, ✉. Problem of Equivalent Fatigue Static Load for Offshore Wind Turbine Support Structure[J]. SOUTHERN ENERGY CONSTRUCTION, 2020, 7(S1): 88-92. DOI: 10.16516/j.gedi.issn2095-8676.2020.S1.017
李鲁, 林敬华. 海上风电支撑结构等效疲劳荷载法存在的问题[J]. 南方能源建设, 2020, 7(S1): 88-92. CSTR: 32391.14.j.gedi.issn2095-8676.2020.S1.017
引用本文: 李鲁, 林敬华. 海上风电支撑结构等效疲劳荷载法存在的问题[J]. 南方能源建设, 2020, 7(S1): 88-92. CSTR: 32391.14.j.gedi.issn2095-8676.2020.S1.017
Lu LI, ✉. Problem of Equivalent Fatigue Static Load for Offshore Wind Turbine Support Structure[J]. SOUTHERN ENERGY CONSTRUCTION, 2020, 7(S1): 88-92. CSTR: 32391.14.j.gedi.issn2095-8676.2020.S1.017
Citation: Lu LI, ✉. Problem of Equivalent Fatigue Static Load for Offshore Wind Turbine Support Structure[J]. SOUTHERN ENERGY CONSTRUCTION, 2020, 7(S1): 88-92. CSTR: 32391.14.j.gedi.issn2095-8676.2020.S1.017

海上风电支撑结构等效疲劳荷载法存在的问题

详细信息
    作者简介:

    李鲁(通信作者)1981-,男,山东烟台人,中国矿业大学(北京)硕士,中国大唐集团新能源科学技术研究院有限公司高级工程师,主要从事新能源工程管理和设计工作(e-mail)53181521@qq.com

  • 中图分类号: TK89

Problem of Equivalent Fatigue Static Load for Offshore Wind Turbine Support StructureEn

  • 摘要:
      目的  海上风电整个使用期内主要受到较大的随机荷载作用,抗疲劳设计是海上风电基础结构设计中的重要内容。目前计算疲劳损伤普遍采用的等效疲劳荷载法的适用性存疑,文章将对该方法进行评估。
      方法  简单回顾等效疲劳荷载设计法,在理论上分析其适用性。基于NREL 5 MW风机及虚拟的勘察资料,利用拟动力法和等效疲劳荷载法,计算导管架的某一节点的疲劳损伤。
      结果  等效疲劳荷载理论上仅在一维应力状态下才严格成立,数值模拟表明该方法会高估疲劳损伤。
      结论  等效疲劳荷载会高估疲劳损伤,可采用拟动力法计算疲劳损伤,但拟动力法的精确性需进一步评估。
    Abstract: [Introduction] Offshre wind turbine support structure is under large stochastic loads within the whole design life, thus fatigue design is an important subject. The Equivalent Fatigue Static Load Method (EFSLM) is widely used in calculating the cumulative fatigue damage, while this method is questionable and is studied in this research.
      Method  After a short review of EFSLM, its application scope was analysed theothetically. Based on NREL 5 MW wind turbine model and pseudo survey data, the quasi-dynamic method and EFSLM were used in calculating the cumulative fatigue damamge of a joint.
      Result  EFSLM is accurate only if the 1st principle stress is linear proportion to loads. Numerical simulation results indicate that EFSLM over estimates the cumulative fatigue damage.
      Conclusion  EFSLM over estimates the cumulative fatigue damage and the quasi-dynamic method is an alternative method, while, the accuracy of which needs further studies.
  • 图  1   国际标准IEC 61400—3中推荐的设计流程

    Figure  1.   Design flowchart recommended by IEC 61400—3

    图  2   第一主应力的叠加和叠加应力状态的第一主应力

    Figure  2.   The summation of two 1st principle stresses vs. the 1st principle stress of summation of 2 stress states

    图  3   NREL 5 MW风机及导管架Bladed模型(以导管架模型为例)

    Figure  3.   Bladed model of NREL 5 MW Wind Turbine and jacket foundation

    (a)   导管架结构模型

    (b)   节点的子结构模型

    表  1   NREL 5 MW机组基本数据

    Table  1   Configurations of NREL 5 MW wind turbine

    机组参数数据
    额定功率/MW5
    风轮方向、叶片数上风向,3叶片
    控制变速,同步变桨
    传动链高速,多级齿轮箱
    风轮直径、轮毂直径/m126,3
    轮毂高度/m90(距离塔底)
    切入、额定、切出风速/(m·s-13,11.4,25
    切入、额定风轮转速/ rpm6.9,12.1
    额定叶尖速/(m·s-180
    风轮外挑/m、主轴倾斜度/(o)、风轮锥度/(o5,5,2.5
    风轮质量/kg110 000
    机舱质量/kg240 000
    塔筒质量/kg347 460
    整体质心坐标/m-0.2,0.0,64.0
    下载: 导出CSV

    表  2   疲劳计算的方法

    Table  2   Cumulative fatigue damages by different methods

    方法线性累计损伤
    法兰面等效疲劳荷载(应力集中系数取1.5)0.002 6
    子结构拟动力法0.002 1
    下载: 导出CSV
  • [1]

    SANGIDM D. The physics of fatigue crack initiation [J]. International Journal of Fatigue,2013(57):58-72.

    [2] 黄昆,韩汝琦改. 固体物理学 [M]. 北京:高等教育出版社,1988.
    [3]

    BEDENS M,ABDULLAHS,ARIFFINA K. Review of fatigue crack propagation models for metallic components [J]. European Journal of Scientific Research,2009,28(3):364-397.

    [4]

    CARPINTERIA. Handbook of fatigue crack propagation in metallic structures [M]. London:Elsevier,1994.

    [5]

    MURAT. A theory of fatigue-crack initiation [M]. Springer Netherlands:Fracture of Engineering Materials and Structures,1991.

    [6] 黄克智,肖纪美. 材料的损伤断裂机理和宏微观力学理论 [M]. 北京:清华大学出版社,1999.
    [7] 陈传尧. 疲劳与断裂 [M]. 武汉:华中科技大学出版社,2002.
    [8]

    International Electrotechnical Commission. Wind turbines-part 3:design requirements for offshore wind turbines:IEC 61400—3 [S]. [S.n.:s.l.],2009.

    [9] 吴家龙. 弹性力学 [M]. 北京:高等教育出版社,2001.
    [10] 王凯. 主应力的计算公式 [J]. 力学与实践,2014,36(6):783-785.
    [11]

    JONKMANJ,BUTTERFIELDS,MUSIALW,et al. Definition of a 5 MW reference wind turbine for offshore system development [R]. Golden, Colorado: National Renewable Energy Laboratory (NREL), 2009.

图(5)  /  表(2)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-18
  • 修回日期:  2020-05-06
  • 刊出日期:  2020-08-30

目录

    /

    返回文章
    返回