高级检索

利用岩土储能冷热分区增强换热性能的研究

Research on Enhancing Heat Transfer Performance by BTES Hot and Cold Partition

  • 摘要:
      目的  岩土储能(BTES: Borehole Thermal Energy Storage)指利用地下土壤、岩石和水的热容量进行储能的钻孔闭式循环系统,主要特点是采用冷热分区布置,以智能化控制手段结合国内地质进行创新型的开发利用。为了研究利用冷热分区提高地埋管换热效果的可行性,以多孔介质传热理论、能量守恒、有限长非移动线热源模型为基础,建立了单U型地埋管换热器井孔内、外数学模型,通过数值模拟的方法分析和验证了可行性。
      方法  基于常见的土壤冷热堆积现象,通过改变管内介质流过两个划分区域的顺序,变被动防控冷热堆积为主动调配储能以跨季节利用,使两个划分区域内主动产生冷、热堆积储能,定义为“冷区”和“热区”。
      结果  经过数值模拟分析,发生热堆积现象的“热区”在供暖期的换热量逐年递增,就最高换热量来说,第二年比第一年提高319 W,第三年比第二年提高308 W;出现冷堆积现象的“冷区”在制冷期的换热量逐年递增,就最高换热量来说,第二年比第一年提高209 W,第三年比第二年提高198 W。
      结论  以上结果说明此方法可以增强地埋换热器的换热效果。在供暖期和制冷期交替使用两个区域既有效解决土壤源热泵系统冷热不平衡造成的能效衰减,又可以在减少打孔场地的情况下提高系统换热效果。

     

    Abstract:
      Introduction  Borehole Thermal Energy Storage (BTES: Borehole Thermal Energy Storage) refers to a borehole closed cycle system that uses the heat capacity of underground soil, rocks and water to store energy. The main feature is the use of cold and hot partitioned layouts and intelligent control methods. Innovative development and utilization combined with domestic geology. In order to study the feasibility of using cold and hot zones to improve the heat transfer effect of buried pipes, a single U-shaped buried pipe heat exchanger borehole was established based on the theory of porous media heat transfer, energy conservation, and finite length non-moving line heat source model. Internal and external mathematical models are analyzed and verified by numerical simulation methods.
      Method  Based on the common soil cold and hot accumulation phenomenon, by changing the order of the medium in the pipe flowing through the two divided areas, it becomes passive to prevent and control cold and heat accumulation In order to actively deploy energy storage for cross-season utilization, so as to actively generate cold and hot accumulation energy storage in the two divided areas, which are defined as "cold zone" and "hot zone".
      Result  After numerical simulation analysis, the phenomenon of thermal accumulation occurs The heat exchange rate of the "hot zone" during the heating period increases year by year. As far as the maximum heat exchange rate is concerned, the second year will increase by 319 W compared to the first year, and the third year will increase by 308 W compared with the second year; cold accumulation occurs. The amount of heat exchange in the "cold zone" during the refrigeration period increases year by year. In terms of the maximum heat exchange rate, the second year will increase by 209 W compared with the first year, and the third year will increase by 198 W compared with the second year.
      Conclusion  The above results show that this method can enhance the heat transfer effect of the buried heat exchanger. The alternate use of the two areas during the heating period and the cooling period not only effectively solves the energy efficiency degradation caused by the imbalance of cold and heat of the ground source heat pump system, but also improves the heat exchange effect of the system while reducing the perforated space.

     

/

返回文章
返回