高级检索

基于碱性水电解槽电化学模型的应用分析

Application Analysis of Electrochemical Model Based on Alkaline Water Electrolyzer

  • 摘要:
      目的  随着可再生能源装机量逐年增加,水电解制氢成为消纳可再生能源的重要途径。
      方法  本文综合碱性电解槽的经典电化学模型、守恒关系及经验公式,探究了温度、压力、电流密度等因素对水电解制氢系统性能的影响,结合槽体结构、关键材料和运行条件分析影响机理,指出了当前水电解制氢系统性能优化的方向。
      结果  选取氢气产率、综合效率、小室电压、氧中氢含量作为电解槽性能参数,研究发现提高电流密度和升温都能增加氢气产率,而压力变化产生的影响较小。文中结合物理机理及实际运行经验,对模型中部分经验参数的有效性做了分析。
      结论  优化电解槽结构与提升催化剂性能是提高电流密度的关键;电解槽工作温度过高则超过设备材料的承受能力,工作温度过低则系统能耗升高,需要综合考虑而定;加压意味着对设备的密封性和基础材料的性能要求更高,设备产出高压力氢气也意味着后端应用端有更多的选择,在一定程度上来说可以减少后端压缩储存系统的投资。

     

    Abstract:
      Introduction  With the increase of renewable energy capacity installed each year, hydrogen production by water electrolysis has become an important way to consume renewable energy.
      Method  This paper integrated the classical electrochemical model, conservation relationship, and empirical formula of alkaline electrolyzer to investigate the impact of temperature, pressure, current density, and other factors on the performance of water electrolysis system for hydrogen production. By analyzing the impact mechanism in relation to the electrolyzer structure, key materials, and operation conditions the study identifies a direction for optimizing the performance of current water electrolysis system for hydrogen production.
      Result  The studied performance parameters include hydrogen yield rate, global efficiency, cell voltage, and hydrogen content in oxygen. The study found that increasing current density and raising the temperature both enhance the hydrogen production rate, while changes in pressure have a relatively minor impact. The paper combines physical mechanisms and practical operating experience to analyze the validity of some empirical parameters in the model.
      Conclusion  Optimizing the electrolyzer structure and boosting the performance of catalysts are crucial for improving the current density. Operating the electrolyzer at too high a temperature exceeds the tolerance of the equipment materials, while operating at too low a temperature increases system energy consumption. Therefore, a balanced consideration is necessary. Increasing pressure means higher requirements for the equipment's sealing and the performance of basic materials, but producing high-pressure hydrogen also provides more options for downstream applications, potentially reducing investment in downstream compression and storage systems.

     

/

返回文章
返回