Abstract:
Introduction The frame gravity energy storage system has a wide range of application prospects due to its high economic benefits, low system costs, and unrestricted geographical conditions.
Method The paper studied the profit variation rules of the frame gravity energy storage system throughout its life cycle in detail by applying the leveled net present value of electricity (LNPVE) model. The paper, based on the net present value of capital flow in gravity energy storage systems, first built a levelized revenue of electricity (LROE) model which includes initial investment, discount rate, feed-in tariff, and government subsidies; then, built the LNPVE model on the basis of the LROE model and the levelized cost of electricity (LCOE) model; and finally explored the changes of LCOE, LROE, LNPVE, total net present value income and total discounted cost when the discount rate, feed-in tariff, service life and charge-discharge efficiency of the system change, to comprehensively consider the impact of different parameters on the economic efficiency of the system.
Result The increase in the discount rate, service life, and charge-discharge efficiency of the system will improve the economic efficiency of the system. In addition, as the service life of the system increases, the LNPVE of the system decreases while the total net present value income increases. Therefore, it is more appropriate to comprehensively consider multiple factors when evaluating the economic efficiency of the system.
Conclusion The LNPVE model studied here can provide a reference for the construction and profit analysis of frame gravity energy storage systems.